
Polyspace® Bug Finder™

User’s Guide

R2016b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

Polyspace® Bug Finder™ User’s Guide
© COPYRIGHT 2013–2016 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and
govern the use, modification, reproduction, release, performance, display, and disclosure of the Program
and Documentation by the federal government (or other entity acquiring for or through the federal
government) and shall supersede any conflicting contractual terms or conditions. If this License fails
to meet the government's needs or is inconsistent in any respect with federal procurement law, the
government agrees to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.
Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.
Revision History

September 2013 Online only New for Version 1.0 (Release 2013b)
March 2014 Online Only Revised for Version 1.1 (Release 2014a)
October 2014 Online only Revised for Version 1.2 (Release 2014b)
March 2015 Online only Revised for Version 1.3 (Release 2015a)
September 2015 Online only Revised for Version 2.0 (Release 2015b)
October 2015 Online only Rereleased for Version 1.3.1 (Release

2015aSP1)
March 2016 Online only Revised for Version 2.1 (Release 2016a)
September 2016 Online only Revised for Version 2.2 (Release 2016b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Project Configuration
1

Create New Project Manually . 1-2
What Is a Project? . 1-2
Create Project and Add Files . 1-2
Specify Analysis Options . 1-3

Create Project Automatically . 1-6

Requirements for Project Creation from Build Systems . . . 1-9

Create Project Using Visual Studio Information 1-12

Update Project . 1-15
Change Folder Path . 1-15
Refresh Source List . 1-15
Refresh Project Created from Build Command 1-15
Add Source and Include Folders . 1-16
Manage Include File Sequence . 1-17

Specify Analysis Options . 1-19
About Analysis Options . 1-19
Gather Compilation Options Efficiently 1-19
Specify Options in User Interface . 1-20

Create Project Using Configuration Template 1-22
Use Predefined Template . 1-22
Create Template . 1-22

Organize Layout of Polyspace User Interface 1-27
Create Your Own Layout . 1-27
Save and Reset Layout . 1-28

Specify External Text Editor . 1-29

iii

Change Default Font Size . 1-31

Define Custom Review Status . 1-32
Define Custom Status . 1-32
Add Justification to Existing Status 1-34

Modeling Multitasking Code . 1-36
Example . 1-36
Limitations . 1-40

Set Up Multitasking Analysis Manually 1-41
Prerequisites . 1-41
Set Up Multitasking Analysis in User Interface 1-42
Set Up Multitasking Analysis at Command Line 1-42
Set Up Multitasking Analysis at MATLAB Command Line . 1-43

Annotate Code for Known or Acceptable Results 1-44
Add Annotations from the Polyspace Interface 1-44
Add Annotations Manually . 1-45

Modify Predefined Target Processor Attributes 1-48

Specify Generic Target Processors . 1-50
Define Generic Target . 1-50
Common Generic Targets . 1-51
View or Modify Existing Generic Targets 1-52
Delete Generic Target . 1-53

Address Alignment . 1-54

Ignore or Replace Keywords Before Compilation 1-55
Content of myTpl.pl file . 1-55
Perl Regular Expression Summary 1-56

Analyze Keil or IAR Compiled Code 1-58

Supported C++ 2011 Extensions . 1-64

Specify External Constraints . 1-68
Create Constraint Template . 1-68
Update Existing Template . 1-70
Specify Constraints in Code . 1-70

iv Contents

Constraints . 1-72

Storage of Polyspace Preferences . 1-76

Coding Rule Sets and Concepts
2

Rule Checking . 2-2
Polyspace Coding Rule Checker . 2-2
Differences Between Bug Finder and Code Prover 2-2

Polyspace MISRA C 2004 and MISRA AC AGC Checkers . . . 2-4

Software Quality Objective Subsets (C:2004) 2-5
Rules in SQO-Subset1 . 2-5
Rules in SQO-Subset2 . 2-6

Software Quality Objective Subsets (AC AGC) 2-10
Rules in SQO-Subset1 . 2-10
Rules in SQO-Subset2 . 2-11

MISRA C:2004 and MISRA AC AGC Coding Rules 2-14
Supported MISRA C:2004 and MISRA AC AGC Rules 2-14
Unsupported MISRA C:2004 and MISRA AC AGC Rules . . . 2-51

Polyspace MISRA C:2012 Checker . 2-54

Software Quality Objective Subsets (C:2012) 2-56
Guidelines in SQO-Subset1 . 2-56
Guidelines in SQO-Subset2 . 2-57

Coding Rule Subsets Checked Early in Analysis 2-61
MISRA C: 2004 and MISRA AC AGC Rules 2-61
MISRA C: 2012 Rules . 2-70

Unsupported MISRA C:2012 Guidelines 2-79

Polyspace MISRA C++ Checker . 2-80

v

Software Quality Objective Subsets (C++) 2-81
SQO Subset 1 – Direct Impact on Selectivity 2-81
SQO Subset 2 – Indirect Impact on Selectivity 2-83

MISRA C++ Coding Rules . 2-88
Supported MISRA C++ Coding Rules 2-88
Unsupported MISRA C++ Rules . 2-110

Polyspace JSF C++ Checker . 2-116

JSF C++ Coding Rules . 2-117
Supported JSF C++ Coding Rules 2-117
Unsupported JSF++ Rules . 2-140

Check Coding Rules from the Polyspace
Environment

3
Activate Coding Rules Checker . 3-2

Select Specific MISRA or JSF Coding Rules 3-6

Create Custom Coding Rules . 3-9

Format of Custom Coding Rules File 3-11

Exclude Files from Analysis . 3-12

Allow Custom Pragma Directives . 3-13

Specify Boolean Types . 3-14

Find Coding Rule Violations . 3-15

Review Coding Rule Violations . 3-16

Filter and Group Coding Rule Violations 3-18
Filter Coding Rules . 3-18
Group Coding Rules . 3-18

vi Contents

Suppress Certain Rules from Display in One Click 3-18

Find Bugs From the Polyspace Environment
4

Choose Specific Defects . 4-2

Run Local Analysis . 4-3

Run Remote Batch Analysis . 4-4

Monitor Analysis . 4-5

Specify Results Folder . 4-6

View Results in the Polyspace Environment
5

Open Results . 5-2
Open Results From Active Project . 5-2
Open Results File From File Browser 5-2

Filter and Group Results . 5-4
Filter Results . 5-4
Group Results . 5-7

Classification of Defects by Impact . 5-8
High Impact Defects . 5-8
Medium Impact Defects . 5-11
Low Impact Defects . 5-13

Limit Display of Defects . 5-16

Generate Reports . 5-18
Generate Reports from User Interface 5-18
Generate Reports from Command Line 5-20

vii

Export Results to Text File . 5-21
Export Results . 5-21
View Exported Results . 5-22
Generate Graphs from Results . 5-23

Customize Existing Report Template 5-25
Prerequisites . 5-25
View Components of Template . 5-25
Change Components of Template . 5-27

Review and Fix Results . 5-30
Assign and Save Comments . 5-30
Import Review Comments from Previous Analysis 5-31

Review Code Metrics . 5-33
Impose Limits on Metrics . 5-33
Comment and Justify Limit Violations 5-36

Navigate to Root Cause of Defect . 5-37
Follow Code Sequence Causing Defect 5-37
Navigate to Identifier Definition . 5-38
Navigate to Identifier References . 5-38

Results Folder Contents . 5-40
Files in the Results Folder . 5-40

Windows Used to Review Results . 5-41
Dashboard . 5-41
Results List . 5-45
Source . 5-47
Result Details . 5-53

Bug Finder Defect Groups . 5-55
Concurrency . 5-55
Data flow . 5-56
Dynamic Memory . 5-56
Good Practice . 5-56
Numerical . 5-57
Object Oriented . 5-57
Programming . 5-57
Resource Management . 5-58
Static Memory . 5-58
Security . 5-58

viii Contents

Tainted data . 5-59

HIS Code Complexity Metrics . 5-60
Project . 5-60
File . 5-60
Function . 5-60

Common Weakness Enumeration from Bug Finder Defects 5-62
Common Weakness Enumeration . 5-62
Polyspace Bug Finder and CWE Compatibility 5-62

Find CWE Identifiers from Defects . 5-64
View CWE Identifiers . 5-64
Filter CWE Identifiers . 5-64
Generate Report with CWE Identifiers 5-64

Mapping Between CWE Identifiers and Defects 5-66

Mapping Between CERT C Standards and Polyspace
Results . 5-80

CERT C Rules . 5-80
CERT C Recommendations . 5-93
Differences Between CERT C Standards and Defects 5-111

Command-Line Analysis
6

Create Project Automatically at Command Line 6-2

Run Local Analysis from DOS or UNIX Command Line 6-4
Specify Sources and Analysis Options Directly 6-4
Specify Sources and Analysis Options in Text File 6-4
Create Options File from Build System 6-5

Run Remote Analysis at the Command Line 6-6
Run Remote Analysis . 6-6
Manage Remote Analysis . 6-7

Create Command-Line Script from Project File 6-10
Generate Scripting Files . 6-10

ix

Run an Analysis . 6-11

Create Project Automatically from MATLAB Command
Line . 6-12

Run Polyspace in MATLAB . 6-14
MATLAB Objects . 6-14
Project Files . 6-16
UNIX/DOS Command-Line Analysis Options and Values . . 6-16

Polyspace Bug Finder Analysis in Simulink
7

Embedded Coder Considerations . 7-2
Default Options . 7-2
Recommended Polyspace Bug Finder Options for Analyzing

Generated Code . 7-3
Hardware Mapping Between Simulink and Polyspace 7-4

TargetLink Considerations . 7-5
TargetLink Support . 7-5
Default Options . 7-5
Lookup Tables . 7-6
Data Range Specification . 7-6
Code Generation Options . 7-7

Generate and Analyze Code . 7-8

Main Generation for Model Analysis 7-15

Review Generated Code Results . 7-17

Troubleshoot Back to Model . 7-19
Back-to-Model Links Do Not Work 7-19
Your Model Already Uses Highlighting 7-19

Analyze Code and Test Software-in-the-Loop 7-21
Code Analysis and Testing Software-in-the-Loop Overview . 7-21
Analyze Code for Defects, Metrics, and MISRA C:2012 7-21

x Contents

Configure Model for Code Analysis
8

Configure Simulink Model . 8-2

Recommended Model Settings for Code Analysis 8-3

Check Simulink Model Settings . 8-5
Check Simulink Model Settings Using the Code Generation

Advisor . 8-5
Check Simulink Model Settings Before Analysis 8-6
Check Simulink Model Settings Automatically 8-8

Annotate Blocks for Known Results 8-11

Configure Code Analysis Options
9

Polyspace Configuration for Generated Code 9-2

Include Handwritten Code . 9-3

Configure Analysis Depth for Referenced Models 9-4

Configure Advanced Polyspace Analysis Options 9-5
Set Advanced Analysis Options . 9-5
Use a Saved Polyspace Configuration File Template 9-6
Reset Polyspace Options for a Simulink Model 9-7

Set Custom Target Settings . 9-8

Set Up Remote Batch Analysis . 9-11

Manage Results . 9-12
Open Polyspace Results Automatically 9-12
Specify Location of Results . 9-13
Save Results to a Simulink Project 9-14

xi

Specify Signal Ranges . 9-15
Specify Signal Range Through Source Block Parameters . . . 9-15
Specify Signal Range Through Base Workspace 9-17

Run Polyspace on Generated Code
10

Specify Type of Analysis to Perform 10-2

Run Analysis for Embedded Coder . 10-3
Start the Analysis . 10-3
Monitor Progress . 10-4

Run Analysis for TargetLink . 10-5
Start the Analysis . 10-5
Monitor Progress . 10-5

Verify S-Function Code . 10-7
S-Function Analysis Workflow . 10-7
Compile S-Functions to Be Compatible with Polyspace 10-7
Example S-Function Analysis . 10-8

Check Coding Rules from Eclipse
11

Activate Coding Rules Checker . 11-2

Select Specific MISRA or JSF Coding Rules 11-6

Create Custom Coding Rules File . 11-9

Contents of Custom Coding Rules File 11-11

Exclude Files from Analysis . 11-12

Allow Custom Pragma Directives . 11-13

xii Contents

Specify Boolean Types . 11-14

Find Coding Rule Violations . 11-15

Review Coding Rule Violations . 11-16

Filter and Group Coding Rule Violations 11-17
Filter Coding Rules . 11-18
Group Coding Rules . 11-18
Suppress Certain Rules from Display in One Click 11-18

Find Bugs from Eclipse
12

Run Analysis . 12-2

Customize Analysis Options . 12-3
Eclipse Refers Directly to Your Compilation Toolchain 12-3
Eclipse Uses Your Compilation Toolchain Through Build

Command . 12-5

View Results in Eclipse
13

View Results . 13-2
View Results in Eclipse . 13-2
View Results in Polyspace Environment 13-2
Results Location . 13-2

Review and Fix Results . 13-4

Limit Display of Defects . 13-6

Filter and Group Results . 13-8
Filter Results . 13-8
Group Results . 13-9

xiii

Understanding the Results Views . 13-11
Results List . 13-11
Result Details . 13-13

Check Coding Rules from Microsoft Visual Studio
14

Activate C++ Coding Rules Checker 14-2

Exclude Files from Analysis . 14-4

Find Bugs from Microsoft Visual Studio
15

Run Polyspace in Visual Studio . 15-2

Monitor Progress in Visual Studio . 15-5
Local Analysis . 15-5
Remote Analysis . 15-7

Customize Polyspace Options . 15-8

Configuration File and Default Options 15-9

Bug Finding in Visual Studio . 15-10

Open Results from Microsoft Visual Studio
16

Open Results in Polyspace Environment 16-2

xiv Contents

Troubleshooting in Polyspace Bug Finder
17

License Error –4,0 . 17-3
Issue . 17-3
Cause . 17-3
Solution . 17-3

View Error Information When Analysis Stops 17-4
View Error Information in User Interface 17-4
View Error Information in Log File 17-5

Contact Technical Support . 17-7
Provide System Information . 17-7
Provide Information About the Issue 17-7

Polyspace Cannot Find the Server . 17-9
Message . 17-9
Possible Cause . 17-9
Solution . 17-9

Job Manager Cannot Write to Database 17-10
Message . 17-10
Possible Cause . 17-10
Workaround . 17-10

C/C++ Compilation: Undefined Identifier 17-12
Issue . 17-12
Possible Cause: Missing Files . 17-12
Possible Cause: Unrecognized Keyword 17-12
Possible Cause: Declaration Embedded in #ifdef

Statements . 17-13
Possible Cause: Project Created from Non-Debug Build . . . 17-14

C/C++ Compilation: Unknown Function Prototype 17-16
Issue . 17-16
Cause . 17-16
Solution . 17-16

C/C++ Compilation: Missing Identifiers with Keil or IAR
Compiler . 17-18

Issue . 17-18

xv

Cause . 17-18
Solution . 17-18

C/C++ Compilation: #error Directive 17-19
Issue . 17-19
Cause . 17-19
Solution . 17-19

C/C++ Compilation: Object is Too Large 17-21
Issue . 17-21
Cause . 17-21
Solution . 17-21

Linking: Body of Assertion or Memory Allocation Function
Discarded . 17-24

Issue . 17-24
Cause . 17-24
Solution . 17-24

Error from Special Characters . 17-25
Issue . 17-25
Cause . 17-25
Workaround . 17-25

C++ Compilation: In-Class Initialization 17-26

C++ Compilation: Double Declarations of Standard Template
Library Functions . 17-27

C++ Compilation: GNU Compiler . 17-28
Partial Support . 17-28
Syntactic Support Only . 17-29
Not Supported . 17-29
Examples . 17-29

C++ Compilation: ISO versus Default 17-31

C++ Compilation: Visual Compilers 17-33
Import Folder . 17-33
pragma Pack . 17-33

xvi Contents

Eclipse Java Version Incompatible with Polyspace Plug-
in . 17-35

Issue . 17-35
Cause . 17-35
Solution . 17-35

Insufficient Memory During Report Generation 17-37
Message . 17-37
Possible Cause . 17-37
Solution . 17-37

Error from Disk Defragmentation and Antivirus Software 17-38
Issue . 17-38
Possible Cause . 17-38
Solution . 17-38

Troubleshooting Project Creation from Visual Studio
Build . 17-39

Cannot Create Project from Visual Studio Build 17-39
Compilation Error After Creating Project from Visual Studio

Build . 17-39

Compiler Not Supported for Project Creation from Build
Systems . 17-41

Issue . 17-41
Cause . 17-41
Solution . 17-41

Slow Build Process When Polyspace Traces the Build . . . 17-49
Issue . 17-49
Cause . 17-49
Solution . 17-49

Check if Polyspace Supports Windows Build Command . . 17-50
Issue . 17-50
Possible Cause . 17-50
Solution . 17-50

xvii

Software Quality with Polyspace Metrics
18

Upload Results to Polyspace Metrics 18-2
Manually Upload Results . 18-2
Automatically Upload Results (Batch Analysis Only) 18-3

View Projects in Polyspace Metrics 18-4
Upload Results . 18-4
Open Metrics Interface . 18-4
Review Metrics . 18-5
Compare Metrics Between Results 18-6
Polyspace Metrics Interface . 18-7

Compare Metrics Against Software Quality Objectives . . 18-12
Apply Predefined Objectives to Metrics 18-12
Bug Finder Quality Objective Levels 18-13
Customize Software Quality Objectives 18-18

Web Browser Requirements for Polyspace Metrics 18-22

View Results List in Polyspace Metrics 18-23
Open Polyspace Metrics . 18-23
View Results List . 18-24
Download Results . 18-25

xviii Contents

1

Project Configuration

• “Create New Project Manually” on page 1-2
• “Create Project Automatically” on page 1-6
• “Requirements for Project Creation from Build Systems” on page 1-9
• “Create Project Using Visual Studio Information” on page 1-12
• “Update Project” on page 1-15
• “Specify Analysis Options” on page 1-19
• “Create Project Using Configuration Template” on page 1-22
• “Organize Layout of Polyspace User Interface” on page 1-27
• “Specify External Text Editor” on page 1-29
• “Change Default Font Size” on page 1-31
• “Define Custom Review Status” on page 1-32
• “Modeling Multitasking Code” on page 1-36
• “Set Up Multitasking Analysis Manually” on page 1-41
• “Annotate Code for Known or Acceptable Results” on page 1-44
• “Modify Predefined Target Processor Attributes” on page 1-48
• “Specify Generic Target Processors” on page 1-50
• “Address Alignment” on page 1-54
• “Ignore or Replace Keywords Before Compilation” on page 1-55
• “Analyze Keil or IAR Compiled Code” on page 1-58
• “Supported C++ 2011 Extensions” on page 1-64
• “Specify External Constraints” on page 1-68
• “Constraints” on page 1-72
• “Storage of Polyspace Preferences” on page 1-76

1 Project Configuration

Create New Project Manually

For analyses in the Polyspace user interface, you must create a Polyspace® project that
organizes your files, configuration options, and results.

What Is a Project?

When creating a new project in Polyspace Bug Finder™, you must know three locations
on your computer:

• Location of source files
• Location of include files
• Location where you want to store analysis results

Create Project and Add Files

1 Select File > New Project.
2 In the Project – Properties window, specify properties for your project:

• Project name
• Location: Folder where you will store the project file (.psprj file) and the

results unless you specify otherwise. You can use the .psprj file to reopen the
project.

The software assigns a default location to your project called your Polyspace
Workspace. You can change this default in the Polyspace Preferences on the
Project and Results Folder tab.

• Clear the Use template check box unless you have a template you want to use.
3 Click Next.
4 Add source folders to your project:

a Use the Browse button to navigate to the folder containing the source files you
want to analyze.

By default, Polyspace looks for .c, .cpp, .cxx, or .cc files. If you use other file
extensions, before closing the dialog box, change the Files of types option.

b If you chose a source folder that contains subfolder and you do not want to
analyze source files in those subfolders, clear the check box Add recursively.

1-2

 Create New Project Manually

c (Linux® only) Often, compilers add symbolic links in your source folders during
compilation. If your folder contains symbolic links to other folders but you do not
want to add source files from the other folders, select Exclude symbolic links.

d Click Add Source Folder. All source files found under this folder are added to
your Polyspace project.

Tip To see the full path of your files, toggle the button.

e If you do not want to analyze all the files under your source folder, right-click

the file or folder and select Exclude Files. The file appears with an symbol
in your project indicating it is not considered for analysis. You can reinclude the
files for analysis by right-clicking and selecting Include Files.

5 Repeat these steps as many times as necessary, then click Next.
6 Add include folders to your project.

a Use the Browse button to navigate to your folder containing the include files
needed for compilation.

By default, Polyspace looks for .h, .hpp, or .hxx files. If you use other file
extensions, before closing the dialog box, change the Files of types option.

b If you chose an include folder that contains subfolder and you want to add those
include folders as well, select the check box Include all subfolders.

c (Linux only) Often, compilers add symbolic links in your folders during
compilation. If your folder contains symbolic links to other folders but you do not
want to add includes from the other folders, select Exclude symbolic links.

d Click Add Include Folders. The include folder is added to your Polyspace
project.

7 Repeat these steps as many times as necessary, then click Finish.

The new project opens in the Project Browser pane.

Specify Analysis Options

You can either retain the default analysis options used by the software or change them to
your requirements. To change the analysis options:

1-3

1 Project Configuration

1
On the Project Browser, select the configuration file .

2 Change the options on the Configuration pane.

Some options to consider looking at are:

• Target & Compiler > Compiler, enables different language extensions.
• Target & Compiler > Target processor type, sets the size of your data types

for the analysis.
• Macros > Preprocessor definitions, a location to enter your compilation flags.
• Multitasking options, for analyzing multitasking code.
• Bug Finder Analysis options, to change which defects Polyspace checks for.
• Coding Rules & Code Metrics options, to check for predefined coding rules or

calculate metrics about your project.

Using the command-line names in the Advanced options pane in the user interface,
you can specify analysis options multiple times. This flexibility allows you to customize
pre-made configurations without having to remove options.

1-4

 Create New Project Manually

If you specify an option multiple times, only the last setting is used. For example, in the
user interface, on the Target and Compiler pane you can specify the target as c18 and in
the Advanced options box enter -target i386. These two targets count as multiple
analysis option specifications. Polyspace uses the target specified in the Advanced
options dialog box, i386.

For more information on the options, see “Analysis Options”.

Related Examples
• “Update Project” on page 1-15
• “Create Project Automatically” on page 1-6

1-5

1 Project Configuration

Create Project Automatically

If you use build automation scripts to build your source code, you can automatically setup
a Polyspace project from your scripts. The automatic project setup runs your automation
scripts to determine:

• Source files.
• Includes.
• Target & compiler options. For more information on these options, see “Target &

Compiler”.

1 Select File > New Project.
2 On the Project – Properties dialog box, after specifying the project name and

location, under Project configuration, select Create from build command.
3 On the next window, enter the following information:

Field Description

Specify command
used for building
your source files

If you use an IDE such as Visual Studio® or Eclipse™
to build your project, specify the full path to your IDE

executable or navigate to it using the button. For a
tutorial using Visual Studio, see “Create Project Using
Visual Studio Information” on page 1-12.

Example: "C:\Program Files (x86)\Microsoft
Visual Studio 10.0\Common7\IDE\VCExpress.exe"

If you use command-line tools to build your project, specify
the appropriate command.

Example:

• make -B -f makefileName or make -W
makefileName

• "mingw32-make.exe -B -f makefilename"

Specify working
directory for
running build
command

Specify the folder from which you run your build automation
script.

1-6

 Create Project Automatically

Field Description

If you specify the full path to your executable in the previous
field, this field is redundant. Specify any folder.

Add advanced
configure options

Specify additional options for advanced tasks such as
incremental build. For the full list of options, see the -
options value argument for polyspaceConfigure.

4
Click .

• If you entered your build command, Polyspace runs the command and sets up a
project.

• If you entered the path to an executable, the executable runs. Build your source
code and close the executable. Polyspace traces your build and sets up a project.

For example, in Visual Studio 2010, use Tools > Rebuild Solution to build your
source code. Then close Visual Studio.

If a failure occurs, see if your build command meets the requirements for automatic
project setup. In some cases, you can modify your build command to work around the
limitations. For more information, see “Requirements for Project Creation from Build
Systems” on page 1-9.

5 Click Finish.

The new project appears on the Project Browser pane. To close the project at any
time, in the Project Browser, right-click the project node and select Close.

6 If you updated your build command, you can recreate the Polyspace project from the
updated command. To recreate an existing project, on the Project Browser, right-
click the project name and select Update Project.

Note:

• In the Polyspace interface, it is possible that the created project will not show implicit
defines or includes. The configuration tool does include them. However, they are not
visible.

• By default, Polyspace assigns the latest version of the compiler to your project. If you
have compilation errors in your project, check the setting for Compiler (-compiler). If
it does not apply to you, change it to a more appropriate one.

1-7

1 Project Configuration

For instance, if the compiler setting is visual12 but you are using Microsoft® Visual
C++® 2010, change the setting to visual10.

• If your build process requires user interaction, you cannot run the build command
from the Polyspace user interface and do an automatic project setup.

Related Examples
• “Create Project Using Visual Studio Information” on page 1-12

More About
• “Compiler Not Supported for Project Creation from Build Systems” on page

17-41
• “Slow Build Process When Polyspace Traces the Build” on page 17-49
• “Check if Polyspace Supports Windows Build Command” on page 17-50

1-8

 Requirements for Project Creation from Build Systems

Requirements for Project Creation from Build Systems
For automatic project creation from build systems, your build commands or makefiles
must meet certain requirements.

For more information on automatic project creation, see:

• “Create Project Automatically” on page 1-6
• “Create Project Automatically at Command Line” on page 6-2
• “Create Project Automatically from MATLAB Command Line” on page 6-12

The requirements for your build command are as follows:

• Your compiler must be called locally.

If you use a compiler cache such as ccache or a distributed build system such as
distmake, the software cannot trace your build. You must deactivate them.

• Your compiler must perform a clean build.

If your compiler performs only an incremental build, use appropriate options to
build all your source files. For example, if you use gmake, append the -B or -W
makefileName option to force a clean build. For the list of options allowed with the
GNU® make, see make options.

• Your compiler configuration must be available to Polyspace. The compilers currently
supported include the following:

• Visual C++ compiler
• gcc

• clang

• MinGW compiler
• IAR compiler

If your compiler configuration is not available to Polyspace:

• Write a compiler configuration file for your compiler in a specific format. For
more information, see “Compiler Not Supported for Project Creation from Build
Systems” on page 17-41.

• Contact MathWorks Technical Support. For more information, see “Contact
Technical Support”.

1-9

https://www.gnu.org/software/make/manual/html_node/Options-Summary.html
http://www.mathworks.com/support/?s_tid=gn_supp

1 Project Configuration

• In Linux, only UNIX® shell (sh) commands must be used. If your build uses advanced
commands such as commands supported only by bash, tcsh or zsh, Polyspace cannot
trace your build.

In Windows®, only DOS commands must be used. If your build uses advanced
commands such as commands supported only by PowerShell or Cygwin™, Polyspace
cannot trace your build. To see if Polyspace supports your build command, run the
command from cmd.exe in Windows. For more information, see “Check if Polyspace
Supports Windows Build Command” on page 17-50.

• Your build command must not use aliases.

The alias command is used in Linux to create an alternate name for commands. If
your build command uses those alternate names, Polyspace cannot recognize them.

• Your build process must not use the LD_PRELOAD mechanism.
• Your build command must be executable completely on the current machine and must

not require privileges of another user.

If your build uses sudo to change user privileges or ssh to remotely log in to another
machine, Polyspace cannot trace your build.

• If your build command uses redirection with the > or | character, the redirection
occurs after Polyspace traces the command. Therefore, Polyspace does not handle the
redirection.

For example, if your command occurs as

command1 | command2

And you enter

polyspace-configure command1 | command2

When tracing the build, Polyspace traces the first command only.
• You cannot trace your build command on the operating system OS X El Capitan if the

security feature System Integrity Protection (SIP) is active. Before tracing your build
command, disable this feature. You can reenable this feature after tracing the build
command.

• If your computer hibernates during the build process, Polyspace might not be able to
trace your build.

1-10

 Requirements for Project Creation from Build Systems

Note: Your environment variables are preserved when Polyspace traces your build
command.

See Also
polyspaceConfigure

Related Examples
• “Create Project Automatically” on page 1-6

More About
• “Slow Build Process When Polyspace Traces the Build” on page 17-49

1-11

1 Project Configuration

Create Project Using Visual Studio Information

To create a Polyspace project, you can trace your Visual Studio build. For Polyspace to
trace your Visual Studio build, you must install both x86 and x64 versions of the Visual
C++ Redistributable for Visual Studio 2012 from the Microsoft website.

1 In the Polyspace interface, select File > New Project.
2 In the Project – Properties window, under Project Configuration, select Create

from build command and click Next

3 In the field Specify command used for building your source files, enter the
full path to the Visual Studio executable. For instance, "C:\Program Files
(x86)\Microsoft Visual Studio 10.0\Common7\IDE\VCExpress.exe".

4 In the field Specify working directory for running build command, enter C:\.

Click .

1-12

http://www.microsoft.com/en-us/download/details.aspx?id=30679

 Create Project Using Visual Studio Information

This action opens the Visual Studio environment.
5 In the Visual Studio environment, create and build a Visual Studio project.

If you already have a Visual Studio project, open the existing project and build a
clean solution. To build a clean solution in Visual Studio 2012, select BUILD >
Rebuild Solution.

6 After the project builds, close Visual Studio.

Polyspace traces your Visual Studio build and creates a Polyspace project.

The Polyspace project contains the source files from your Visual Studio build and the
relevant Target & Compiler options.

7 If you update your Visual Studio project, to update the corresponding Polyspace
project, on the Project Browser, right-click the project name and select Update
Project.

1-13

1 Project Configuration

More About
• “Troubleshooting Project Creation from Visual Studio Build” on page 17-39

1-14

 Update Project

Update Project

In this section...

“Change Folder Path” on page 1-15
“Refresh Source List” on page 1-15
“Refresh Project Created from Build Command” on page 1-15
“Add Source and Include Folders” on page 1-16
“Manage Include File Sequence” on page 1-17

Change Folder Path

If you have moved the source folder that you added to your project, modify the path in
your Polyspace project. You can also modify the folder path to point to a different version
of the code in your version control system.

1
In the Project Browser, right-click the top sources folder and select Modify
Path.

2 In the dialog box, in the text box, change the path to the new location.
3 Click Save Changes.
4 Click Finish.
5 To resync the files under this source folder, right-click your source folder and select

Refresh Source Folder.

Refresh Source List

If you made changes to files in a folder already added to the project, you do not need
to re-add the folder to your project. Refreshing your source file list looks for new files,
removed files, and moved files.

1 Right-click your source folder and select Refresh Source Folder. The files in your
Polyspace project refresh to match your file system.

Refresh Project Created from Build Command

If you created your project automatically from your build system, to update the project
later by rerunning your build command:

1-15

1 Project Configuration

1 On the Project Browser pane, right-click the project folder and select Update
Project.

2 Enter the same information you did when creating the original project. For more
information, see “Create Project Automatically” on page 1-6.

Add Source and Include Folders

If you want to change which files or folders are active in your project without removing
them from your project tree:

1 Right-click the file or folder and select Exclude Files.

The file appears with an symbol in your project indicating it is not considered
for analysis. You can reinclude the files for analysis by right-clicking and selecting
Include Files.

If you want to add additional source folders or include folders, follow these steps:

1 In the Project Browser, right-click your project or the Source or Include folder in
your project.

2 Select Add Source Folder or Add Include Folder.
3 Add source folders to your project:

a Use the Browse button to navigate to the folder containing the source files you
want to analyze.

By default, Polyspace looks for .c, .cpp, .cxx, or .cc files. If you use other file
extensions, before closing the dialog box, change the Files of types option.

b If you chose a source folder that contains subfolder and you do not want to
analyze source files in those subfolders, clear the check box Add recursively.

c (Linux only) Often, compilers add symbolic links in your source folders during
compilation. If your folder contains symbolic links to other folders but you do not
want to add source files from the other folders, select Exclude symbolic links.

d Click Add Source Folder. All source files found under the folder are added to
your Polyspace project.

Tip To see the full path of your files, click the button.

1-16

 Update Project

e If you do not want to analyze all the files under your source folder, right-click

the file or folder and select Exclude Files. The file appears with an symbol
in your project indicating it is not considered for analysis. You can reinclude the
files for analysis by right-clicking and selecting Include Files.

Repeat these steps as many times as necessary, then click Next.
4 Add include folders to your project.

a Use the Browse button to navigate to your folder containing the include files
needed for compilation.

By default, Polyspace looks for .h, .hpp, or .hxx files. If you use other file
extensions, before closing the dialog box, change the Files of types option.

b If you chose an include folder that contains subfolder and you want to add those
include folders as well, select the check box Include all subfolders.

c (Linux only) Often, compilers add symbolic links in your folders during
compilation. If your folder contains symbolic links to other folders but you do not
want to add includes from the other folders, select Exclude symbolic links.

d Click Add Include Folders. The include folder is added to your Polyspace
project.

Repeat these steps as many times as necessary, then click Finish. The new project
opens in the Project Browser pane.

5 Click Finish.

Manage Include File Sequence

You can change the order of include folders to manage the sequence in which include files
are compiled.

When multiple include files by the same name exist in different folders, you might want
to change the order of include folders instead of reorganizing the contents of your folders.
For a particular include file name, the software includes the file in the first include folder
under Project_Name > Include.

In the following figure, Folder_1 and Folder_2 contain the same include file
include.h. If your source code includes this header file, during compilation, Folder_2/
include.h is included in preference to Folder_1/include.h.

1-17

1 Project Configuration

To change the order of include folders:

1 In your project, expand the Include folder.
2 Select the include folder or folders that you want to move.
3

To move the folder, click either or .

Related Examples
• “Specify Results Folder” on page 4-6
• “Create New Project Manually” on page 1-2

1-18

 Specify Analysis Options

Specify Analysis Options
In this section...

“About Analysis Options” on page 1-19
“Gather Compilation Options Efficiently” on page 1-19
“Specify Options in User Interface” on page 1-20

About Analysis Options

You can either use the default analysis options used by the software or change them to
your requirements.

At the command line or using the command-line names in the Advanced options pane
in the user interface, you can specify analysis options multiple times. This flexibility
allows you to customize pre-made configurations without having to remove options.

If you specify an option multiple times, only the last setting is used. For example, if your
configuration is:

-lang c

-prog test_bf_cp

-verif-version 1.0

-author username

-sources-list-file sources.txt

-OS-target no-predefined-OS

-target i386

-compiler none

-misra-cpp required-rules

-target powerpc

Polyspace uses the last target setting, powerpc, and ignores the other target specified,
i386.

Similarly, in the user interface, you can specify the target as c18 on the Target and
Compiler pane and in Advanced options enter -target i386. These two targets
count as multiple analysis option specifications. Polyspace uses the target specified in the
Advanced options dialog box, i386.

Gather Compilation Options Efficiently

The code is often tuned for the target (as discussed in “Analyze Keil or IAR Compiled
Code” on page 1-58). Rather than applying minor changes to the code, create a single

1-19

1 Project Configuration

polyspace.h file which contains target specific functions and options. The -include
option can then be used to force the inclusion of the polyspace.h file in the source files.

Where there are missing prototypes or conflicts in variable definition, writing the
expected definition or prototype within such a header file will yield several advantages.

Direct benefits:

• The error detection is much faster since it will be detected during compilation rather
than in the link or subsequent phases.

• The position of the error will be identified more precisely.
• Original source files will not need to be modified.

Indirect benefits:

• The file is automatically included as the very first file in the original .c files.
• The file can contain much more powerful macro definitions than simple -D options.
• The file is reusable for other projects developed under the same environment.

Example

This is an example of a file that can be used with the -include option.

/* Standard Includes Used by Cross Compiler */

#include <stdlib.h>

#include "another_file.h"

/* Generic definitions, reusable from one project to another /*

#define far

#define at(x)

/* Function prototype to detect declaration mismatches earlier */

void f(int);

/* Variable prototype to detect declaration mismatches earlier */

extern int x;

Specify Options in User Interface

To specify analysis options, use the different nodes on the Configuration pane.

1-20

 Specify Analysis Options

For instance:

• To specify the target processor, select Target & Compiler in the Configuration
tree view. Select your processor from the Target processor type dropdown list.

• To check for violation of MISRA C® rules, select Coding Rules. Check the Check
MISRA C Rules box. To check for a subset of rules, select an option from the
dropdown list.

See Also
polyspaceBugFinder

Related Examples
• “Create Project Using Configuration Template” on page 1-22

More About
• “Analysis Options”

1-21

1 Project Configuration

Create Project Using Configuration Template

A configuration template is a predefined set of analysis options for a specific compilation
environment. When creating a new project, you can do one of the following:

• Use an existing template to automatically set analysis options for your compiler.

Polyspace software provides predefined templates for common compilers such as
IAR, Kiel, Visual and VxWorks. For additional templates, see Polyspace Compiler
Templates.

• Set analysis options manually. You can then save your options as a template and
reuse them later. You can also share the template with other users and enforce
consistent usage of Polyspace Code Prover™ in your organization.

Use Predefined Template

1 Select File > New Project.
2 On the Project – Properties dialog box, after specifying the project name and

location, under Project configuration, select Use template.
3 On the next screen, select the template that corresponds to your compiler. For

further details on a template, select the template and view the Description column
on the right.

If your compiler does not appear in the list of predefined templates, select
Baseline_C or Baseline_C++.

4 On the next screen, add your source files and include folders. For more information,
see “Create New Project Manually” on page 1-2.

Create Template

• To create a Project Template from an open project:

1 Right-click the configuration that you want to use, and then select Save As
Template.

2 Enter a description for the template, then click Proceed. Save your Template
file.

1-22

http://www.mathworks.com/matlabcentral/fileexchange/35927-polyspace-compiler-templates
http://www.mathworks.com/matlabcentral/fileexchange/35927-polyspace-compiler-templates

 Create Project Using Configuration Template

• When you create a new project, to use a saved template:

1 Under Project configuration, check the Use template box. Click Next.

1-23

1 Project Configuration

1-24

 Create Project Using Configuration Template

2
Select . Navigate to the template that you saved
earlier, and then click Open. The new template appears in the Custom
templates folder on the Templates browser. Select the template for use.

1-25

1 Project Configuration

Related Examples
• “Specify Analysis Options” on page 1-19

More About
• “Analysis Options”

1-26

 Organize Layout of Polyspace User Interface

Organize Layout of Polyspace User Interface

The Polyspace user interface has two default layouts of panes.

The default layout for project setup has the following arrangement of panes:

ConfigurationProject Browser
Output Summary

The default layout for results review has the following arrangement of panes:

Result DetailsResults List
Dashboard

You can create and save your own layout of panes. If the current layout of the user
interface does not meet your requirements, you can use a saved layout.

You can also change to one of the default layouts of the Polyspace user interface. Select
Window > Reset Layout > Project Setup or Window > Reset Layout > Results
Review.

Create Your Own Layout

To create your own layout, you can close some of the panes, open some panes that are not
visible by default, and move existing panes to new locations.

To open a closed pane, select Window > Show/Hide View > pane_name.

To move a pane to another location:

1 Float the pane in one of three ways:

• Click and drag the blue bar on the top of the pane to float all tabs in that pane.

For instance, if Project Browser and Results List are tabbed on the same
pane, this action floats the pane together with its tabs.

• Click and drag the tab at the bottom of the pane to float only that tab.

For instance, if Project Browser and Results List are tabbed on the same
pane, dragging out Project Browser creates a pane with only Project Browser
on it and floats this new pane.

1-27

1 Project Configuration

• Click on the top right of the pane to float all tabs in that pane.
2 Drag the pane to another location until it snaps into a new position.

If you want to place the pane in its original location, click in the upper-right
corner of the floating pane.

For instance, you can create your own layout for reviewing results.

Save and Reset Layout

After you have created your own layout, you can save it. You can change from another
layout to this saved layout.

• To save your layout, select Window > Save Current Layout As. Enter a name for
this layout.

• To use a saved layout, select Window > Reset Layout > layout_name.
• To remove a saved layout from the Reset Layout list, select Window > Remove

Custom Layout > layout_name.

1-28

 Specify External Text Editor

Specify External Text Editor

This example shows how to change the default text editor for opening source files from
the Polyspace interface. By default, if you open your source file from the user interface, it
opens on a Code Editor tab. If you prefer editing your source files in an external editor,
you can change this default behavior.

1 Select Tools > Preferences.
2 On the Polyspace Preferences dialog box, select the Editors tab.
3 From the Text editor drop-down list, select External.
4 In the Text editor field, specify the path to your text editor. For example:

C:\Program Files\Windows NT\Accessories\wordpad.exe

5 To make sure that your source code opens at the correct line and column in your
text editor, specify command-line arguments for the editor using Polyspace macros,
$FILE, $LINE and $COLUMN. Once you specify the arguments, when you right-click a
check on the Results List pane and select Open Editor, your source code opens at
the location of the check.

Polyspace has already specified the command-line arguments for the following
editors:

• Emacs

• Notepad++ — Windows only
• UltraEdit

• VisualStudio

• WordPad — Windows only
• gVim

If you are using one of these editors, select it from the Arguments drop-down list.

If you are using another text editor, select Custom from the drop-down list, and
enter the command-line options in the field provided.

For console-based text editors, you must create a terminal. For example, to specify
vi:

a In the Text Editor field, enter /usr/bin/xterm.

1-29

1 Project Configuration

b From the Arguments drop-down list, select Custom.
c In the field to the right, enter -e /usr/bin/vi $FILE.

6 To revert back to the built-in editor, on the Editors tab, from the Text editor drop-
down list, select Built In.

1-30

 Change Default Font Size

Change Default Font Size

This example shows how to change the default font size in the Polyspace user interface.

1 Select Tools > Preferences.
2 On the Miscellaneous tab:

• To increase the font size of labels on the user interface, select a value for GUI
font size.

For example, to increase the default size by 1 point, select +1.
• To increase the font size of the code on the Source pane and the Code Editor

pane, select a value for Source code font size.
3 Click OK.

When you restart Polyspace, you see the increased font size.

1-31

1 Project Configuration

Define Custom Review Status

This example shows how to customize the statuses you assign on the Results List pane.

Define Custom Status

1 Select Tools > Preferences.
2 Select the Review Statuses tab.
3 Enter your new status at the bottom of the dialog box, then click Add.

1-32

 Define Custom Review Status

The new status appears in the Status list.
4 Click OK to save your changes and close the dialog box.

When reviewing checks, you can select the new status from the Status drop-down list on
the Results List pane.

1-33

1 Project Configuration

Add Justification to Existing Status

By default, a check is automatically justified if you assign the status, Justified or
No action planned. However, you can change this default setting so that a check is
justified when you assign one of the other existing statuses.

To add justification to existing status Improve:

1 Select Tools > Preferences.
2 Select the Review Statuses tab. For the Improve status, select the check box in the

Justify column. Click OK.

1-34

 Define Custom Review Status

If you assign the Improve status to a check on the Results List pane, the check gets
automatically justified.

1-35

1 Project Configuration

Modeling Multitasking Code
In this section...

“Example” on page 1-36
“Limitations” on page 1-40

Polyspace Bug Finder can analyze your multitasking code for “Concurrency Defects”,
such as locking and data races, if Bug Finder knows how your concurrency model is set
up. In some situations, Polyspace can detect the concurrency model automatically.

Supported POSIX® primitives are:

• pthread_create

• pthread_mutex_lock

• pthread_mutex_unlock

Supported VxWorks® primitives are:

• taskSpawn

• semTake

• semGive

To activate automatic detection of concurrency primitives for VxWorks, use the VxWorks
template. For more information on templates, see “Create Project Using Configuration
Template” on page 1-22.

If you use a different library or different multitasking functions, you must manually
model your multitasking threads by using configuration options. See “Set Up
Multitasking Analysis Manually” on page 1-41.

Note: There are some aspects of multitasking that Polyspace cannot model. See
“Limitations” on page 1-40.

Example

The following multitasking code models five philosophers sharing five forks.

#include "pthread.h"

#include <stdio.h>

1-36

 Modeling Multitasking Code

pthread_mutex_t forks[4];

void* philo1(void* args) {

 while(1) {

 printf("Philosopher 1 is thinking\n");

 sleep(1);

 pthread_mutex_lock(&forks[0]);

 printf("Philosopher 1 takes left fork\n");

 pthread_mutex_lock(&forks[1]);

 printf("Philosopher 1 takes right fork\n");

 printf("Philosopher 1 is eating\n");

 sleep(1);

 pthread_mutex_unlock(&forks[1]);

 printf("Philosopher 1 puts down right fork\n");

 pthread_mutex_unlock(&forks[0]);

 printf("Philosopher 1 puts down left fork\n");

 }

 return NULL;

}

void* philo2(void* args) {

 while(1) {

 printf("Philosopher 2 is thinking\n");

 sleep(1);

 pthread_mutex_lock(&forks[1]);

 printf("Philosopher 2 takes left fork\n");

 pthread_mutex_lock(&forks[2]);

 printf("Philosopher 2 takes right fork\n");

 printf("Philosopher 2 is eating\n");

 sleep(1);

 pthread_mutex_unlock(&forks[2]);

 printf("Philosopher 2 puts down right fork\n");

 pthread_mutex_unlock(&forks[1]);

 printf("Philosopher 2 puts down left fork\n");

 }

 return NULL;

}

void* philo3(void* args) {

 while(1) {

 printf("Philosopher 3 is thinking\n");

 sleep(1);

 pthread_mutex_lock(&forks[2]);

1-37

1 Project Configuration

 printf("Philosopher 3 takes left fork\n");

 pthread_mutex_lock(&forks[3]);

 printf("Philosopher 3 takes right fork\n");

 printf("Philosopher 3 is eating\n");

 sleep(1);

 pthread_mutex_unlock(&forks[3]);

 printf("Philosopher 3 puts down right fork\n");

 pthread_mutex_unlock(&forks[2]);

 printf("Philosopher 3 puts down left fork\n");

 }

 return NULL;

}

void* philo4(void* args) {

 while(1) {

 printf("Philosopher 4 is thinking\n");

 sleep(1);

 pthread_mutex_lock(&forks[3]);

 printf("Philosopher 4 takes left fork\n");

 pthread_mutex_lock(&forks[4]);

 printf("Philosopher 4 takes right fork\n");

 printf("Philosopher 4 is eating\n");

 sleep(1);

 pthread_mutex_unlock(&forks[4]);

 printf("Philosopher 4 puts down right fork\n");

 pthread_mutex_unlock(&forks[3]);

 printf("Philosopher 4 puts down left fork\n");

 }

 return NULL;

}

void* philo5(void* args) {

 while(1) {

 printf("Philosopher 5 is thinking\n");

 sleep(1);

 pthread_mutex_lock(&forks[4]);

 printf("Philosopher 5 takes left fork\n");

 pthread_mutex_lock(&forks[0]);

 printf("Philosopher 5 takes right fork\n");

 printf("Philosopher 5 is eating\n");

 sleep(1);

 pthread_mutex_unlock(&forks[0]);

 printf("Philosopher 5 puts down right fork\n");

 pthread_mutex_unlock(&forks[4]);

1-38

 Modeling Multitasking Code

 printf("Philosopher 5 puts down left fork\n");

 }

 return NULL;

}

int main(void)

{

 pthread_t ph[5];

 pthread_create(&ph[0],NULL,philo1,NULL);

 pthread_create(&ph[1],NULL,philo2,NULL);

 pthread_create(&ph[2],NULL,philo3,NULL);

 pthread_create(&ph[3],NULL,philo4,NULL);

 pthread_create(&ph[4],NULL,philo5,NULL);

 pthread_join(ph[0],NULL);

 pthread_join(ph[1],NULL);

 pthread_join(ph[2],NULL);

 pthread_join(ph[3],NULL);

 pthread_join(ph[4],NULL);

 return 1;

}

Each philosopher needs two forks to eat, a right and a left fork. The functions philo1,
philo2, philo3, philo4, and philo5 represent the philosophers. Each function
requires two pthread_mutex_t resources, representing the two forks required to eat.
All five functions run at the same time in five concurrent threads.

However, a deadlock occurs in this example. When each philosopher picks up their first
fork (each thread locks one pthread_mutex_t resource), all the forks are being used.
So, the philosophers (threads) wait for their second fork (second pthread_mutex_t
resource) to become available. However, all the forks (resources) are being held by the
waiting philosophers (threads), causing a deadlock.

Without additional configuration options, Polyspace Bug Finder detects that your
program performs multitasking, and that a deadlock defect occurs.

To run this example in Polyspace Bug Finder:

1 Copy this code into a .c file.
2 Create a Polyspace Bug Finder project with that .c file.
3 Run the analysis.

1-39

1 Project Configuration

Limitations

The multitasking model that this option creates does not follow the exact semantics of
POSIX or VxWorks. Polyspace cannot model:

• Thread priorities and attributes — Ignored by Polyspace.
• Recursive semaphores.
• Unbounded thread identifiers, such as extern pthread_t ids[] — Warning.
• Calls to concurrency primitive through high-order calls — Warning.
• Aliases on thread identifiers — Polyspace over-approximates when the alias is used.
• Termination of threads — Polyspace ignores pthread_join, and replaces

pthread_exit by a standard exit.

See Also
Disable automatic concurrency detection (-disable-concurrency-detection) | Configure
multitasking manually | Entry points (-entry-points) | Critical section details (-critical-
section-begin -critical-section-end) | Temporally exclusive tasks (-temporal-exclusions-
file) | Find defects (-checkers)

Related Examples
• “Set Up Multitasking Analysis Manually” on page 1-41

More About
• “Concurrency” on page 5-55

1-40

 Set Up Multitasking Analysis Manually

Set Up Multitasking Analysis Manually

In this section...

“Prerequisites” on page 1-41
“Set Up Multitasking Analysis in User Interface” on page 1-42
“Set Up Multitasking Analysis at Command Line” on page 1-42
“Set Up Multitasking Analysis at MATLAB Command Line” on page 1-43

This example shows how to prepare for an analysis of multitasking code. Polyspace Bug
Finder can check if the protection mechanisms for your multitasking model are well
designed.

Polyspace Bug Finder automatically sets up the multitasking configuration for some
types of multitasking functions. For information about the supported concurrency
functions, see “Modeling Multitasking Code” on page 1-36.

If your code has functions that are intended for concurrent execution, but that cannot be
detected automatically, you must specify them before analysis. If these functions operate
on a common variable, you must also specify protection mechanisms for those operations.

Prerequisites

For this example, save the following code in a file multi.c:

int a;

begin_critical_section();

end_critical_section();

void performTaskCycle(void) {

 begin_critical_section();

 a++;

 end_critical_section();

}

void task1(void) {

 performTaskCycle();

}

1-41

1 Project Configuration

void task2(void) {

 performTaskCycle();

}

void task3() {

 a=0;

}

Set Up Multitasking Analysis in User Interface

1 Specify your entry points and protection mechanisms.

a On the Configuration pane, select the Multitasking node.
b Select Configure multitasking manually.
c For Cyclic tasks, specify task1, task2, and task3, each on its own line.
d For Critical section details, specify begin_critical_section as Starting

procedure and end_critical_section as Ending procedure.
e For Temporally exclusive tasks, specify task1 task3 and task2 task3,

each on its own line.
2 Specify the concurrency defects that you want Polyspace Bug Finder to detect. For

more information, see “Concurrency Defects”.

a On the Configuration pane, select the Bug Finder Analysis node.
b From the Find defects list, select custom.
c Under the Concurrency node, select Data race and Deadlock.

Set Up Multitasking Analysis at Command Line

At the DOS or UNIX command prompt, specify options with the polyspace-bug-
finder-nodesktop command.

polyspace-bug-finder-nodesktop -sources multi.c

 -entry-points task1,task2,task3

 -critical-section-begin begin_critical_section:cs1

 -critical-section-end end_critical_section:cs1

 -temporal-exclusions-file tasklist.txt

 -checkers data_race,deadlock

1-42

 Set Up Multitasking Analysis Manually

Set Up Multitasking Analysis at MATLAB Command Line

At the DOS or UNIX command prompt, specify options with the polyspaceBugFinder
function.

polyspaceBugFinder('-sources','multi.c',...

 '-cyclic-tasks','task1,task2,task3',...

 '-critical-section-begin','begin_critical_section:cs1',...

 '-critical-section-end','end_critical_section:cs1',...

 '-temporal-exclusions-file','tasklist.txt',...

 '-checkers','data_race,deadlock')

See Also
Disable automatic concurrency detection (-disable-concurrency-detection) | Configure
multitasking manually | Entry points (-entry-points) | Critical section details (-critical-
section-begin -critical-section-end) | Temporally exclusive tasks (-temporal-exclusions-
file) | Find defects (-checkers)

More About
• “Concurrency” on page 5-55
• “Modeling Multitasking Code” on page 1-36

1-43

1 Project Configuration

Annotate Code for Known or Acceptable Results

If Polyspace finds defects in your code that you cannot or will not fix, you can add
annotations to your code. These annotations are code comments that indicate known or
acceptable defects or coding rule violations. By using these annotations, you can:

• Avoid rereviewing defects or coding rule violations from previous analyses.
• Preserve review comments and classifications.

Note: Source code annotations do not apply to code comments. You cannot annotate these
rules:

• MISRA-C Rules 2.2 and 2.3

• MISRA-C++ Rule 2-7-1
• JSF++ Rules 127 and 133

Add Annotations from the Polyspace Interface

This method shows you how to convert review comments and classifications in the
Polyspace interface into code annotations.

1 On the Results List or Result Details pane, assign a Severity, Status, and
Comment to a result.

a Click a result.
b From the Severity and Status dropdown lists, select an option.
c In the Comment field, enter a comment or keyword that helps you easily

recognize the result.
2 On the Results List pane, right-click the commented result and select Add Pre-

Justification to Clipboard. The software copies the severity, status, and comment
to the clipboard.

3 Right-click the result again and select Open Editor. The software opens the source
file to the location of the defect.

4 Paste the contents of your clipboard on the line immediately before the line
containing the defect or coding rule violation.

1-44

 Annotate Code for Known or Acceptable Results

You can see your review comments as a code comment in the Polyspace annotation
syntax, which Polyspace uses to repopulate review comments on your next analysis.

5 Save your source file and rerun the analysis.

On the Results List pane, the software populates the Severity, Status, and
Comment columns for the defect or rule violation that you annotated. These fields
are read only because they are populated from your code annotation. If you use a
specific keyword or status for your annotations, you can filter your results to hide
or show your annotated results. For more information on filtering, see “Filter and
Group Results” on page 5-4.

Add Annotations Manually

This method shows you how to enter comments directly into your source files by using
the Polyspace code annotation syntax. The syntax is not case-sensitive and applies to the
first uncommented line of C/C++ code following the annotation.

1 Open your source file in an editor and locate the line or section of code that you want
to annotate.

2 Add one of the following annotations:

• For a single line of code, add the following text directly before the line of code that
you want to annotate.

/* polyspace<Type:Kind1[,Kind2] : [Severity] : [Status] >

 [Additional comments] */

• For a section of code, use the following syntax. (Polyspace Code Prover ignores
this type of code annotation.)

/* polyspace:begin<Type:Kind1[,Kind2] : [Severity] : [Status] >

 [Additional text] */

... Code section ...

1-45

1 Project Configuration

/* polyspace:end<Type:Kind1[,Kind2] : [Severity] : [Status] > */

If a macro expands to multiple lines, use the syntax for code sections even though
the macro itself covers one line. The single-line syntax applies only to results that
appear in the first line of the expanded macro.

3 Replace the words Type, Kind1, [Kind2], [Severity], [Status], and
[Additional text] with allowed values, indicated in the following table. The text
with square brackets [] is optional and you can delete it. See “Syntax Examples” on
page 1-47.

Word Allowed Values

Type The type of results:

• Defect

• MISRA-C, for MISRA C:2004
• MISRA-AC-AGC

• MISRA-C3, for MISRA C:2012
• MISRA-CPP

• JSF

• Custom, for custom coding rule violations.
Kind1,

[Kind2],...

For defects, specific defect abbreviations such as MEM_LEAK, FREED_PTR.
The defect abbreviations are listed on the individual reference pages. See
“Polyspace Bug Finder Results”.

For coding rule violations, specify the rule number or numbers.

If you want the comment to apply to all possible defects or coding rules,
specify ALL.

Severity • Unset

• High

• Medium

• Low

• Not a defect

Status Action for correcting the defect in your code. Possible values are:

1-46

 Annotate Code for Known or Acceptable Results

Word Allowed Values

• Fix

• Improve

• Investigate

• Justified

• No action planned

• Other

Additional text Additional comments, such as a keyword or an explanation for the status
and severity.

Syntax Examples

• A single defect:

polyspace<Defect:HARD_CODED_BUFFER_SIZE:Medium:Investigate>

 Known issue, why is this buffer hard coded?

int table[100];

• A MISRA C:2012 rule violation:

/* polyspace<MISRA-C3: 13.1 : Low : Justify with annotations> Known issue */

int arr[2] = {x++,y};

• Multiple defects:

polyspace<Defect:USELESS_WRITE,DEAD_CODE,UNREACHABLE:Low:No Action Planned>

 Known issue

• Multiple JSF® rule violations:

polyspace<JSF:9,13:Low:Justified> Known issue

1-47

1 Project Configuration

Modify Predefined Target Processor Attributes

You can modify certain attributes of the predefined target processors. If your specific
processor is not listed, you may be able to specify a similar processor and modify its
characteristics to match your processor. The settings that you can modify for each target
are shown in [brackets] in the target processor settings. See Target processor type (-
target).

To modify target processor attributes:

1 On the Configuration pane, select the Target & Compiler node.
2 From the Target processor type drop-down list, select the target processor that

you want to use.
3 To the right of the Target processor type field, click Edit.

The Advanced target options dialog box opens.

4 Modify the attributes as required.

1-48

 Modify Predefined Target Processor Attributes

For information on each target option, see Generic target options.
5 Click OK to save your changes.

1-49

1 Project Configuration

Specify Generic Target Processors

Define Generic Target

If your application is designed for a custom target processor, you can configure many
basic characteristics of the target by selecting the selecting the mcpu... (Advanced)
target, and specifying the characteristics of your processor.

To configure a generic target:

1 On the Configuration pane, select the Target & Compiler node.
2 From the Target processor type drop-down list, select mcpu... (Advanced).

The Generic target options dialog box opens.

3 In the Enter the target name field, enter a name, for example, MyTarget.
4 Specify the parameters for your target, such as the size of basic types, and alignment

with arrays and structures.

1-50

 Specify Generic Target Processors

For example, when the alignment of basic types within an array or structure is
always 8, it implies that the storage assigned to arrays and structures is strictly
determined by the size of the individual data objects (without fields and end
padding).

Note: For information on each target option, see Generic target options.

5 Click Save to save the generic target options and close the dialog box.

Common Generic Targets

The following tables describe the characteristics of common generic targets.

ST7 (Hiware C compiler : HiCross for ST7)

ST7 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 32 32 16/32 unsigned Big
alignment8 16/8 16/8 32/16/8 32/16/8 32/16/8 32/16/8 32/16/8 32/16/8 N/A N/A

ST9 (GNU C compiler : gcc9 for ST9)

ST9 char short int long long
long

float double long
double

ptr char is endian

size 8 16 16 32 32 32 64 64 16/64 unsigned Big
alignment8 8 8 8 8 8 8 8 8 N/A N/A

Hitachi H8/300, H8/300L

Hitachi
H8/300,
H8/300L

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/32 32 64 32 654 64 16 unsigned Big
alignment8 16 16 16 16 16 16 16 16 N/A N/A

Hitachi H8/300H, H8S, H8C, H8/Tiny

1-51

1 Project Configuration

Hitachi
H8/300H,
H8S, H8C,
H8/Tiny

char short int long long
long

float double long
double

ptr char is endian

size 8 16 16/ 32 32 64 32 64 64 32 unsignedBig
alignment 8 16 32/ 16 32/16 32/16 32/16 32/16 32/16 32/16 N/A N/A

View or Modify Existing Generic Targets

To view or modify generic targets that you previously created:

1 On the Configuration pane, select the Target & Compiler node.
2 From the Target processor type drop-down list, select your target, for example,

myTarget.
3 Click Edit. The Generic target options dialog box opens, displaying your target

attributes.

4 If required, specify new attributes for your target. Then click Save.

1-52

 Specify Generic Target Processors

5 Otherwise, click Cancel.

Delete Generic Target

To delete a generic target:

1 On the Configuration pane, select the Target & Compiler node.
2 From the Target processor type drop-down list, select the target that you want to

remove, for example, myTarget.

3 Click Remove. The software removes the target from the list.

1-53

1 Project Configuration

Address Alignment

Polyspace software handles address alignment by calculating sizeof and alignments.
This approach takes into account 3 constraints implied by the ANSI standard which
ensure that:

• that global sizeof and offsetof fields are optimum (i.e. as short as possible);
• the alignment of addressable units is respected;
• global alignment is respected.

Consider the example:

struct foo {char a; int b;}

• Each field must be aligned; that is, the starting offset of a field must be a multiple of
its own size1

• So in the example, char a begins at offset 0 and its size is 8 bits. int b cannot begin
at 8 (the end of the previous field) because the starting offset must be a multiple of its
own size (32 bits). Consequently, int b begins at offset=32. The size of the struct
foo before global alignment is therefore 64 bits.

• The global alignment of a structure is the maximum of the individual alignments of
each of its fields;

• In the example, global_alignment = max (alignment char a, alignment
int b) = max (8, 32) = 32

• The size of a struct must be a multiple of its global alignment. In our case, b
begins at 32 and is 32 long, and the size of the struct (64) is a multiple of the
global_alignment (32), so sizeof is not adjusted.

1. except in the cases of “double” and “long” on some targets.

1-54

 Ignore or Replace Keywords Before Compilation

Ignore or Replace Keywords Before Compilation

You can ignore noncompliant keywords, for example, far or 0x, which precede an
absolute address. The template myTpl.pl (listed below) allows you to ignore these
keywords:

1 Save the listed template as C:\Polyspace\myTpl.pl.
2 Select the Configuration > Target & Compiler > Environment Settings pane.
3 To the right of the Command/script to apply to preprocessed files field, click on

the file icon.
4 Use the Open File dialog box to navigate to C:\Polyspace.
5 In the File name field, enter myTpl.pl.
6 Click Open. You see C:\Polyspace\myTpl.pl in the Command/script to apply

to preprocessed files field.

For more information, see Command/script to apply to preprocessed files (-post-
preprocessing-command).

Content of myTpl.pl file

#!/usr/bin/perl

##

Post Processing template script

#

##

Usage from Polyspace UI:

#

1) Linux: /usr/bin/perl PostProcessingTemplate.pl

2) Windows: matlabroot\sys\perl\win32\bin\perl.exe <pathtoscript>\

PostProcessingTemplate.pl

#

##

$version = 0.1;

$INFILE = STDIN;

$OUTFILE = STDOUT;

while (<$INFILE>)

1-55

1 Project Configuration

{

 # Remove far keyword

 s/far//;

 # Remove "@ 0xFE1" address constructs

 s/\@\s0x[A-F0-9]*//g;

 # Remove "@0xFE1" address constructs

 # s/\@0x[A-F0-9]*//g;

 # Remove "@ ((unsigned)&LATD*8)+2" type constructs

 s/\@\s\(\(unsigned\)\&[A-Z0-9]+*8\)\+\d//g;

 # Convert current line to lower case

 # $_ =~ tr/A-Z/a-z/;

 # Print the current processed line

 print $OUTFILE $_;

}

Perl Regular Expression Summary

###

Metacharacter What it matches

###

Single Characters

. Any character except newline

[a-z0-9] Any single character in the set

[^a-z0-9] Any character not in set

\d A digit same as

\D A non digit same as [^0-9]

\w An Alphanumeric (word) character

\W Non Alphanumeric (non-word) character

#

Whitespace Characters

\s Whitespace character

\S Non-whitespace character

\n newline

\r return

\t tab

\f formfeed

\b backspace

#

1-56

 Ignore or Replace Keywords Before Compilation

Anchored Characters

\B word boundary when no inside []

\B non-word boundary

^ Matches to beginning of line

$ Matches to end of line

#

Repeated Characters

x? 0 or 1 occurrence of x

x* 0 or more x's

x+ 1 or more x's

x{m,n} Matches at least m x's and no more than n x's

abc Exactly "abc"

to|be|great One of "to", "be" or "great"

#

Remembered Characters

(string) Used for back referencing see below

\1 or $1 First set of parentheses

\2 or $2 First second of parentheses

\3 or $3 First third of parentheses

##

Back referencing

#

e.g. swap first two words around on a line

red cat -> cat red

s/(\w+) (\w+)/$2 $1/;

#

##

1-57

1 Project Configuration

Analyze Keil or IAR Compiled Code

Typical embedded control applications frequently read and write port data, set timer
registers and read input captures. To deal with this without using assembly language,
some microprocessor compilers have specified special data types like sfr and sbit.
Typical declarations are:

sfr A0 = 0x80;

sfr A1 = 0x81;

sfr ADCUP = 0xDE;

sbit EI = 0x80;

These declarations reside in header files such as regxx.h for the basic 80Cxxx micro
processor. The definition of sfr in these header files customizes the compiler to the
target processor.

When accessing a register or a port, using sfr data is then simple, but is not part of
standard ANSI C:

int status,P0;

void main (void) {

 ADCUP = 0x08; /* Write data to register */

 A1 = 0xFF; /* Write data to Port */

 status = P0; /* Read data from Port */

 EI = 1; /* Set a bit (enable interrupts) */

}

You can analyze this type of code using the Compiler option . This option allows the
software to support the Keil or IAR C language extensions even if some structures,
keywords, and syntax are not ANSI standard. The following tables summarize what is
supported when analyzing code that is associated with the Keil or IAR compilers.

The following table summarizes the supported Keil C language extensions:

Example: -compiler keil -sfr-types sfr=8

Type/Language Description Example Restrictions

Type bit • An expression to type
bit gives values in
range [0,1].

bit x = 0, y = 1,

 z = 2;

assert(x == 0);

assert(y == 1);

assert(z == 1);

pointers to bits and
arrays of bits are not
allowed

1-58

 Analyze Keil or IAR Compiled Code

Type/Language Description Example Restrictions

• Converting an
expression in the type,
gives 1 if it is not
equal to 0, else 0. This
behavior is similar to c
++ booltype.

assert(sizeof(bit)

 == sizeof(int));

Type sfr • The -sfr-types
option defines
unsigned types name
and size in bits.

• The behavior of a
variable follows
a variable of type
integral.

• A variable which
overlaps another one
(in term of address)
will be considered as
volatile.

sfr x = 0xf0; //

declaration of

variable x at

address 0xF0

sfr16 y = 0x4EEF;

For this example, options
need to be:

-compiler keil

-sfr-types sfr=8,

 sfr16=16

sfr and sbit types
are only allowed
in declarations of
external global
variables.

Type sbit • Each read/write
access of a variable is
replaced by an access
of the corresponding
sfr variable access.

• Only external global
variables can be
mapped with a sbit
variable.

• Allowed expressions
are integer variables,
cells of array of int
and struct/union
integral fields.

• a variable can also be
declared as extern bit
in an another file.

sfr x = 0xF0;

sbit x1 = x ^ 1; // 1st bit of x

sbit x2 = 0xF0 ^ 2; // 2nd bit of x

sbit x3 = 0xF3; // 3rd bit of x

sbit y0 = t[3] ^ 1;

/* file1.c */

sbit x = P0 ^ 1;

/* file2.c */

extern bit x;

x = 1; // set the 1st bit of P0 to 1

1-59

1 Project Configuration

Type/Language Description Example Restrictions

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var _at_ 0xF0

int x @ 0xFE ;

static const

int y @ 0xA0 = 3;

Absolute variable
locations are ignored
(even if declared with
a #pragma location).

Interrupt
functions

A warnings in the log
file is displayed when an
interrupt function has
been found: "interrupt
handler detected :
<name>" or "task entry
point detected : <name>"

void foo1 (void)

interrupt XX = YY

using 99 {…}

void foo2 (void) _

task_ 99 _priority_

2 {…}

Entry points and
interrupts are not
taken into account as
-entry-points.

Keywords ignored alien, bdata, far, idata, ebdata, huge, sdata, small, compact, large, reentrant.
Defining -D __C51__, keywords large code, data, xdata, pdata and xhuge are
ignored.

The following table summarize the IAR compiler support:

Example: -compiler iar -sfr-types sfr=8

Type/Language Description Example Restrictions

Type bit • An expression to type
bit gives values in
range [0,1].

• Converting an
expression in the type,
gives 1 if it is not
equal to 0, else 0. This
behavior is similar to c
++ bool type.

• If initialized with
values 0 or 1, a
variable of type bit is
a simple variable (like
a c++ bool).

• A variable of type
bit is a register bit

union {

 int v;

 struct {

 int z;

 } y;

} s;

void f(void) {

 bit y1 = s.y.z . 2;

 bit x4 = x.4;

 bit x5 = 0xF0 . 5;

 y1 = 1;

 // 2nd bit of s.y.z

 // is set to 1

};

pointers to bits and
arrays of bits are not
allowed

1-60

 Analyze Keil or IAR Compiled Code

Type/Language Description Example Restrictions

variable (mapped with
a bit or a sfr type)

Type sfr • The -sfr-types
option defines
unsigned types name
and size.

• The behavior of a
variable follows
a variable of type
integral.

• A variable which
overlaps another one
(in term of address)
will be considered as
volatile.

sfr x = 0xf0; //

declaration of

variable x at

address 0xF0

sfr and sbit types
are only allowed
in declarations of
external global
variables.

Individual bit
access

• Individual bit
can be accessed
without using sbit/bit
variables.

• Type is allowed for
integer variables, cells
of integer array, and
struct/union integral
fields.

int x[3], y;

x[2].2 = x[0].3 + y.1;

Absolute variable
location

Allowed constants are
integers, strings and
identifiers.

int var @ 0xF0;

int xx @ 0xFE ;

static const int y \

 @0xA0 = 3;

Absolute variable
locations are ignored
(even if declared with
a #pragma location).

Interrupt
functions

• A warning is
displayed in the log
file when an interrupt
function has been
found: "interrupt
handler detected :
funcname"

interrupt [1] \

 using [99] void \

 foo1(void) { ... };

monitor [3] void \

 foo2(void) { ... };

Entry points and
interrupts are not
taken into account as
-entry-points.

1-61

1 Project Configuration

Type/Language Description Example Restrictions

• A monitor function
is a function that
disables interrupts
while it is executing,
and then restores the
previous interrupt
state at function exit.

Keywords ignored saddr, reentrant, reentrant_idata, non_banked, plm,

bdata, idata, pdata, code, data, xdata, xhuge, interrupt,

__interrupt and __intrinsic

Unnamed struct/
union

• Fields of unions/
structs without a
tag or a name can
be accessed without
naming their parent
struct.

• On a conflict
between a field of an
anonymous struct
with other identifiers:

• with a variable
name, field name
is hidden

• with a field
of another
anonymous struct
at different scope,
closer scope is
chosen

• with a field
of another
anonymous struct
at same scope: an
error "anonymous
struct field name
<name> conflict“ is

union { int x; };

union { int y; struct { int

z; }; } @ 0xF0;

1-62

 Analyze Keil or IAR Compiled Code

Type/Language Description Example Restrictions

displayed in the log
file.

no_init attribute • a global variable
declared with this
attribute is handled
like an external
variable.

• It is handled like a
type qualifier.

no_init int x;

no_init union

{ int y; } @ 0xFE;

The #pragma
no_init does not
affect the code.

The option -sfr-types defines the size of a sfr type for the Keil or IAR compiler.

The syntax for an sfr element in the list is type-name=typesize.

For example:

-sfr-types sfr=8,sfr16=16

defines two sfr types: sfr with a size of 8 bits, and sfr16 with a size of 16-bits. A value
type-name must be given only once. 8, 16 and 32 are the only supported values for type-
size.

Note: As soon as an sfr type is used in the code, you must specify its name and size,
even if it is the keyword sfr.

Note: Many IAR and Keil compilers currently exist that are associated to specific targets.
It is difficult to maintain a complete list of those supported.

1-63

1 Project Configuration

Supported C++ 2011 Extensions

The following table list which C++ 2011 standards Polyspace can analyze. If your code
contains non-supported constructions, Polyspace reports a compilation error.

Standard Description Supported

C++2011-
N2118 Rvalue references Yes
C++2011-
N2439 Rvalue references for *this Yes
C++2011-
N1610 Initialization of class objects by rvalues Yes
C++2011-
N2756 Non-static data member initializers Yes
C++2011-
N2242 Variadic templates Yes
C++2011-
N2555 Extending variadic template parameters Yes
C++2011-
N2672 Initializer lists Yes
C++2011-
N1720 Static assertions Yes
C++2011-
N1984 auto-typed variables Yes
C++2011-
N1737 Multi-declarator auto Yes
C++2011-
N2546 Removal of auto as a storage-class specifier Yes
C++2011-
N2541 New function declaration syntax Yes
C++2011-
N2927 New wording for C++0x lambdas Yes
C++2011-
N2343 Declared type of an expression Yes

1-64

 Supported C++ 2011 Extensions

Standard Description Supported

C++2011-
N3276 decltype and call expressions Yes
C++2011-
N1757 Right angle brackets Yes
C++2011-
DR226 Default template arguments for function templates Yes
C++2011-
DR339 Solving the SFINAE problem for expressions Yes
C++2011-
N2258 Template aliases Yes
C++2011-
N1987 Extern templates Yes
C++2011-
N2431 Null pointer constant Yes
C++2011-
N2347 Strongly-typed enums Yes
C++2011-
N2764 Forward declarations for enums Yes
C++2011-
N2761 Generalized attributes Yes
C++2011-
N2235 Generalized constant expressions Yes
C++2011-
N2341 Alignment support Yes
C++2011-
N1986 Delegating constructors Yes
C++2011-
N2540 Inheriting constructors Yes
C++2011-
N2437 Explicit conversion operators Yes
C++2011-
N2249 New character types Yes

1-65

1 Project Configuration

Standard Description Supported

C++2011-
N2442 Unicode string literals Yes
C++2011-
N2442 Raw string literals Yes
C++2011-
N2170 Universal character name literals No
C++2011-
N2765 User-defined literals Yes
C++2011-
N2342 Standard Layout Types No
C++2011-
N2346 Defaulted and deleted functions Yes
C++2011-
N1791 Extended friend declarations Yes
C++2011-
N2253 Extending sizeof Yes
C++2011-
N2535 Inline namespaces Yes
C++2011-
N2544 Unrestricted unions Yes
C++2011-
N2657 Local and unnamed types as template arguments Yes
C++2011-
N2930 Range-based for Yes
C++2011-
N2928 Explicit virtual overrides Yes
C++2011-
N3050 Allowing move constructors to throw [noexcept] Yes
C++2011-
N3053 Defining move special member functions Yes
C++2011-
N2239 Concurrency - Sequence points No

1-66

 Supported C++ 2011 Extensions

Standard Description Supported

C++2011-
N2427 Concurrency - Atomic operations No
C++2011-
N2748 Concurrency - Strong Compare and Exchange No
C++2011-
N2752 Concurrency - Bidirectional Fences No
C++2011-
N2429 Concurrency - Memory model No
C++2011-
N2664

Concurrency - Data-dependency ordering: atomics and
memory model No

C++2011-
N2179 Concurrency - Propagating exceptions No
C++2011-
N2440 Concurrency - Abandoning a process and at_quick_exit Yes
C++2011-
N2547 Concurrency - Allow atomics use in signal handlers No
C++2011-
N2659 Concurrency - Thread-local storage No
C++2011-
N2660

Concurrency - Dynamic initialization and destruction
with concurrency No

C++2011-
N2340 __func__ predefined identifier Yes
C++2011-
N1653 C99 preprocessor Yes
C++2011-
N1811 long long Yes
C++2011-
N1988 Extended integral types No

See Also
C++11 extensions (-cpp11-extension)

1-67

1 Project Configuration

Specify External Constraints

This example shows how to specify constraints (also known data range specifications
or DRS) on variables in your code. Polyspace uses the code that you provide to make
assumptions about items such as variable ranges and allowed buffer size for pointers.
Sometimes the assumptions are broader than what you expect because:

• You have not provided the complete code. For example, you did not provide some of
the function definitions.

• Some of the information about variables is available only at run time. For example,
some variables in your code obtain values from the user at run time.

Because of these broad assumptions, Polyspace can sometimes produce false positives.

To reduce the number of such false positives, you can specify additional constraints
on global variables, function inputs, and return values of stubbed functions. After you
specify your constraints, you can save them as an XML file to use them for subsequent
analyses. If your source code changes, you can update the previous constraints. You do
not have to create a new constraint template.

In this section...

“Create Constraint Template” on page 1-68
“Update Existing Template” on page 1-70
“Specify Constraints in Code” on page 1-70

Create Constraint Template

1 On the Configuration pane, select Inputs & Stubbing.
2 To the right of Constraint setup, click the Edit button.

1-68

 Specify External Constraints

3 In the Constraint Specification dialog box, create a blank constraint template. The
template contains a list of all variables on which you can provide constraints.

• If you have run analysis once and not changed your code since that analysis,
instead of generating a new constraint template, use the folder icon to navigate to
the previous results folder. Open the template file drs_template.xml from that
folder. Save the file in another location, in case you delete the previous results
folder.

•
Otherwise, to create a new template, click . The software compiles
your project and creates a template. The new template is stored in a file
Module_number_Project_name_drs_template.xml in your project folder.

4 Specify your constraints and save the template as an XML file. For more
information, see “Constraints” on page 1-72.

5 Click OK.

You see the full path to the template XML file in the Constraint setup field. If you
run an analysis, Polyspace uses this template for extracting variable constraints.

1-69

1 Project Configuration

Update Existing Template

If you remove some variables or functions from your code, constraints on them are not
applicable any more. Instead of regenerating a constraint template and respecifying the
constraints, you can update an existing template and remove the variables that are not
present in your code.

1 On the Configuration pane, select Inputs & Stubbing.
2 Open the existing template in one of the following ways:

• In the Constraint setup field, enter the path to the template XML file. Click
Edit.

•
Click Edit. In the Constraint Specification dialog box, click the icon to
navigate to your template file.

3 Click Update.

a Variables that are no longer present in your source code appear under the Non
Applicable node. To remove an entry under the Non Applicable node or the
node itself, right-click and select Remove This Node.

b Specify your new constraints for any of the other variables.

Specify Constraints in Code

Specifying constraints outside your code allows for more precise . However, you must use
the code within the specified constraints because the constraints are outside your code.
Otherwise, the results might not apply. For example, if you use function inputs outside
your specified range, a run-time error can occur on an operation even though checks on
the operation are green.

To specify constraints inside your code, you can use:

• Appropriate error handling tests in your code.

Polyspace checks to determine if the errors can actually occur. If they do not occur,
the test blocks appear as Unreachable code.

• The assert macro. For example, to constrain a variable var in the range [0,10], you
can use assert(var >= 0 && var <=10);.

1-70

http://www.cplusplus.com/reference/cassert/assert/

 Specify External Constraints

Polyspace checks your assert statements to see if the condition can be false.
Following the assert statement, Polyspace considers that the assert condition is
true. Using assert statements, you can constrain your variables for the remaining
code in the same scope. For examples, see User assertion.

See Also
Constraint setup (-data-range-specifications)

Related Examples
• “Constrain Global Variable Range”

1-71

1 Project Configuration

Constraints

The Polyspace DRS Configuration interface allows you to specify constraints for:

• Global Variables.
• User-defined Functions.
• Stubbed Functions.

For more information, see “Specify External Constraints” on page 1-68.

The following table lists the constraints that can be specified through this interface.

Column Settings

Name Displays the list of variables and functions in your Project for which
you can specify data ranges.

This Column displays three expandable menu items:

• Globals – Displays global variables in the project.
• User defined functions – Displays user-defined functions in the

project. Expand a function name to see its inputs.
• Stubbed functions – Displays a list of stub functions in the

project. Expand a function name to see the inputs and return
values.

File Displays the name of the source file containing the variable or
function.

Attributes Displays information about the variable or function.

For example, static variables display static.
Data Type Displays the variable type.
Main
Generator
Called

Applicable only for user-defined functions.

Specifies whether the main generator calls the function:

• MAIN GENERATOR – Main generator may call this function,
depending on the value of the -functions-called-in-loop (C)
or -main-generator-calls (C++) parameter.

• NO – Main generator will not call this function.

1-72

 Constraints

Column Settings

• YES – Main generator will call this function.
Init Mode Specifies how the software assigns a range to the variable:

• MAIN GENERATOR – Variable range is assigned depending on the
settings of the main generator options -variables-written-
before-loop and -no-def-init-glob. (For C++, the options
are -main-generator-writes-variables, and -no-def-
init-glob.)

• IGNORE – Variable is not assigned to any range, even if a range is
specified.

• INIT – Variable is assigned to the specified range only at
initialization, and keeps the range until first write.

• PERMANENT – Variable is permanently assigned to the specified
range. If the variable is assigned outside this range during the
program, no warning is provided. Use the globalassert mode if
you need a warning.

User-defined functions support only INIT mode.

Stub functions support only PERMANENT mode.

For C verifications, global pointers support MAIN GENERATOR,
IGNORE, or INIT mode.

• MAIN GENERATOR – Pointer follows the options of the main
generator.

• IGNORE – Pointer is not initialized
• INIT – Specify if the pointer is NULL, and how the pointed object

is allocated (Initialize Pointer and Init Allocated options).

1-73

1 Project Configuration

Column Settings

Init Range Specifies the minimum and maximum values for the variable.

You can use the keywords min and max to denote the minimum and
maximum values of the variable type. For example, for the type long,
min and max correspond to -2^31 and 2^31-1 respectively.

You can also use hexadecimal values. For example: 0x12..0x100

For enum variables, you cannot specify ranges directly using the
enumerator constants. Instead use the values represented by the
constants.

For enum variables, you can also use the keywords enum_min and
enum_max to denote the minimum and maximum values that the
variable can take. For example, for an enum variable of the type
defined below, enum_min is 0 and enum_max is 5:

enum week{ sunday, monday=0, tuesday,

 wednesday, thursday, friday, saturday};

Initialize
Pointer

Applicable only to pointers. Enabled only when you specify Init
Mode:INIT.

Specifies whether the pointer should be NULL:

• May-be NULL – The pointer could potentially be a NULL pointer
(or not).

• Not Null – The pointer is never initialized as a null pointer.
• Null – The pointer is initialized as NULL.

Note: Not applicable for C++ projects.

1-74

 Constraints

Column Settings

Init Allocated Applicable only to pointers. Enabled only when you specify Init
Mode:INIT.

Specifies how the pointed object is allocated:

• MAIN GENERATOR – The pointed object is allocated by the main
generator.

• None – Pointed object is not written.
• SINGLE – Write the pointed object or the first element of an array.

(This setting is useful for stubbed function parameters.)
• MULTI – All objects (or array elements) are initialized.

Note: Not applicable for C++ projects.
Allocated
Objects

Applicable only to pointers.

Specifies how many objects are pointed to by the pointer (the pointed
object is considered as an array).

Note: The Init Allocated parameter specifies how many allocated
objects are actually initialized.

Note: Not applicable for C++ projects.
Global Assert Specifies whether to perform an assert check on the variable at global

initialization, and after each assignment.
Global Assert
Range

Specifies the minimum and maximum values for the range you want
to check.

Comment Remarks that you enter, for example, justification for your DRS
values.

1-75

1 Project Configuration

Storage of Polyspace Preferences

The software stores the settings that you specify through the Polyspace Preferences in
the following file:

• Windows: $Drive\Users\$User\AppData\Roaming\MathWorks \MATLAB
\$Release\Polyspace\polyspace.prf

• Linux: /home/$User/.matlab/$Release/Polyspace/polyspace.prf

Here, $Drive is the drive where the operating system files are located such as C:, $User
is the username and $Release is the release number.

The following file stores the location of all installed Polyspace products across various
releases:

• Windows: $Drive\Users\$User\AppData\Roaming\MathWorks
\MATLAB \AppData\Roaming\MathWorks\MATLAB \polyspace_shared

\polyspace_products.prf

• Linux : /home/$User/.matlab/polyspace_shared/polyspace_products.prf

1-76

2

Coding Rule Sets and Concepts

• “Rule Checking” on page 2-2
• “Polyspace MISRA C 2004 and MISRA AC AGC Checkers” on page 2-4
• “Software Quality Objective Subsets (C:2004)” on page 2-5
• “Software Quality Objective Subsets (AC AGC)” on page 2-10
• “MISRA C:2004 and MISRA AC AGC Coding Rules” on page 2-14
• “Polyspace MISRA C:2012 Checker” on page 2-54
• “Software Quality Objective Subsets (C:2012)” on page 2-56
• “Coding Rule Subsets Checked Early in Analysis” on page 2-61
• “Unsupported MISRA C:2012 Guidelines” on page 2-79
• “Polyspace MISRA C++ Checker” on page 2-80
• “Software Quality Objective Subsets (C++)” on page 2-81
• “MISRA C++ Coding Rules” on page 2-88
• “Polyspace JSF C++ Checker” on page 2-116
• “JSF C++ Coding Rules” on page 2-117

2 Coding Rule Sets and Concepts

Rule Checking

Polyspace Coding Rule Checker

Polyspace software allows you to analyze code to demonstrate compliance with
established C and C++ coding standards:

• MISRA C 2004
• MISRA C 2012
• MISRA® C++:2008
• JSF++:2005

Applying coding rules can reduce the number of defects and improve the quality of your
code.

While creating a project, you specify both the coding standard, and which rules to
enforce. Polyspace software performs rule checking before and during the analysis.
Violations appear in the Results List pane.

If any source files in the analysis do not compile, coding rules checking will be
incomplete. The coding rules checker results:

• May not contain full results for files that did not compile
• May not contain full results for the files that did compile as some rules are checked

only after compilation is complete

Note: When you enable the Compilation Assistant and coding rules checking, the
software does not report coding rule violations if there are compilation errors.

Differences Between Bug Finder and Code Prover

Coding rule checker results can differ between Polyspace Bug Finder and Polyspace
Code Prover. The rule checking engines are identical in Bug Finder and Code Prover,
but the context in which the checkers execute is not the same. If a project is launched
from Bug Finder and Code Prover with the same source files and same configuration
options, the coding rule results can differ. For example, the main generator used in Code
Prover activates global variables, which causes the rule checkers to identify such global

2-2

 Rule Checking

variables as initialized. The Bug Finder does not have a main generator, so handles the
initialization of the global variables differently. Another difference is how violations are
reported. The coding rules violations found in header files are not reported to the user in
Bug Finder, but these violations are visible in Code Prover.

This difference can occur in MISRA C:2004, MISRA C:2012, MISRA C++, and JSF++. See
the Polyspace Specification column or the Description for each rule.

Even though there are differences between rules checkers in Bug Finder and Code
Prover, both reports are valid in their own context. For quick coding rules checking, use
Polyspace Bug Finder.

2-3

2 Coding Rule Sets and Concepts

Polyspace MISRA C 2004 and MISRA AC AGC Checkers

The Polyspace MISRA C:2004 checker helps you comply with the MISRA C 2004 coding
standard.2

When MISRA C rules are violated, the MISRA C checker enables Polyspace software to
provide messages with information about the rule violations. Most messages are reported
during the compile phase of an analysis.

The MISRA C checker can check nearly all of the 142 MISRA C:2004 rules.

The MISRA AC AGC checker checks rules from the OBL (obligatory) and REC
(recommended) categories specified by MISRA AC AGC Guidelines for the Application of
MISRA-C:2004 in the Context of Automatic Code Generation.

There are subsets of MISRA coding rules that can have a direct or indirect impact on the
selectivity (reliability percentage) of your results. When you set up rule checking, you can
select these subsets directly. These subsets are defined in:

• “Software Quality Objective Subsets (C:2004)” on page 2-5
• “Software Quality Objective Subsets (AC AGC)” on page 2-10

Note: The Polyspace MISRA checker is based on MISRA C:2004, which also incorporates
MISRA C Technical Corrigendum (http://www.misra-c.com).

2. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the MISRA
Consortium.

2-4

http://www.misra-c.com/

 Software Quality Objective Subsets (C:2004)

Software Quality Objective Subsets (C:2004)

In this section...

“Rules in SQO-Subset1” on page 2-5
“Rules in SQO-Subset2” on page 2-6

Rules in SQO-Subset1

In Polyspace Code Prover, the following set of coding rules will typically reduce the
number of unproven results.

Rule number Description

5.2 Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

8.11 The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage.

8.12 When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialization.

11.2 Conversion shall not be performed between a pointer to an object and
any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an integral
type.

12.12 The underlying bit representations of floating-point values shall not
be used.

13.3 Floating-point expressions shall not be tested for equality or
inequality.

13.4 The controlling expression of a for statement shall not contain any
objects of floating type.

13.5 The three expressions of a for statement shall be concerned only with
loop control.

14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.

2-5

2 Coding Rule Sets and Concepts

Rule number Description

16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.7 A pointer parameter in a function prototype should be declared as

pointer to const if the pointer is not used to modify the addressed
object.

17.3 >, >=, <, <= shall not be applied to pointer types except where they
point to the same array.

17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of

pointer indirection.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.
20.4 Dynamic heap memory allocation shall not be used.

Note: Polyspace software does not check MISRA rule 18.3.

Rules in SQO-Subset2

Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding
rules enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule number Description

5.2 Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

6.3 typedefs that indicate size and signedness should be used in place of
the basic types

8.7 Objects shall be defined at block scope if they are only accessed from
within a single function

2-6

 Software Quality Objective Subsets (C:2004)

Rule number Description

8.11 The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage.

8.12 When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialization.

9.2 Braces shall be used to indicate and match the structure in the
nonzero initialization of arrays and structures

9.3 In an enumerator list, the = construct shall not be used to explicitly
initialize members other than the first, unless all items are explicitly
initialized

10.3 The value of a complex expression of integer type may only be cast to
a type that is narrower and of the same signedness as the underlying
type of the expression

10.5 Bitwise operations shall not be performed on signed integer types
11.1 Conversion shall not be performed between a pointer to a function

and any type other than an integral type
11.2 Conversion shall not be performed between a pointer to an object and

any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

11.5 Type casting from any type to or from pointers shall not be used
12.1 Limited dependence should be placed on C's operator precedence

rules in expressions
12.2 The value of an expression shall be the same under any order of

evaluation that the standard permits
12.5 The operands of a logical && or || shall be primary-expressions
12.6 Operands of logical operators (&&, || and !) should be effectively

Boolean. Expression that are effectively Boolean should not be used
as operands to operators other than (&&, || or !)

12.9 The unary minus operator shall not be applied to an expression
whose underlying type is unsigned

12.10 The comma operator shall not be used

2-7

2 Coding Rule Sets and Concepts

Rule number Description

12.12 The underlying bit representations of floating-point values shall not
be used.

13.1 Assignment operators shall not be used in expressions that yield
Boolean values

13.2 Tests of a value against zero should be made explicit, unless the
operand is effectively Boolean

13.3 Floating-point expressions shall not be tested for equality or
inequality.

13.4 The controlling expression of a for statement shall not contain any
objects of floating type.

13.5 The three expressions of a for statement shall be concerned only with
loop control.

13.6 Numeric variables being used within a “for” loop for iteration
counting should not be modified in the body of the loop

14.4 The goto statement shall not be used.
14.7 A function shall have a single point of exit at the end of the function.
14.8 The statement forming the body of a switch, while, do while or for

statement shall be a compound statement
14.10 All if else if constructs should contain a final else clause
15.3 The final clause of a switch statement shall be the default clause
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function

prototype declaration
16.7 A pointer parameter in a function prototype should be declared as

pointer to const if the pointer is not used to modify the addressed
object.

16.8 All exit paths from a function with non-void return type shall have an
explicit return statement with an expression

16.9 A function identifier shall only be used with either a preceding &, or
with a parenthesized parameter list, which may be empty

2-8

 Software Quality Objective Subsets (C:2004)

Rule number Description

17.3 >, >=, <, <= shall not be applied to pointer types except where they
point to the same array.

17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 The declaration of objects should contain no more than 2 levels of

pointer indirection.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.3 An area of memory shall not be reused for unrelated purposes.
18.4 Unions shall not be used.
19.4 C macros shall only expand to a braced initializer, a constant, a

parenthesized expression, a type qualifier, a storage class specifier, or
a do-while-zero construct

19.9 Arguments to a function-like macro shall not contain tokens that look
like preprocessing directives

19.10 In the definition of a function-like macro each instance of a
parameter shall be enclosed in parentheses unless it is used as the
operand of # or ##

19.11 All macro identifiers in preprocessor directives shall be defined before
use, except in #ifdef and #ifndef preprocessor directives and the
defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.
20.4 Dynamic heap memory allocation shall not be used.

Note: Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of
values. For example, the following code checks the validity of an input being greater than
1:

int my_system_library_call(int in) {assert (in>1); if random \

return -1 else return 0; }

2-9

2 Coding Rule Sets and Concepts

Software Quality Objective Subsets (AC AGC)

In this section...

“Rules in SQO-Subset1” on page 2-10
“Rules in SQO-Subset2” on page 2-11

Rules in SQO-Subset1

In Polyspace Code Prover, the following set of coding rules will typically reduce the
number of unproven results.

Rule number Description

5.2 Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

8.11 The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage.

8.12 When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialization.

11.2 Conversion shall not be performed between a pointer to an object and
any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

12.12 The underlying bit representations of floating-point values shall not
be used.

14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
17.3 >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.

2-10

 Software Quality Objective Subsets (AC AGC)

For more information about these rules, see MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation.

Rules in SQO-Subset2

Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding
rules enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule number Description

5.2 Identifiers in an inner scope shall not use the same name as an
identifier in an outer scope, and therefore hide that identifier.

6.3 typedefs that indicate size and signedness should be used in place of
the basic types

8.7 Objects shall be defined at block scope if they are only accessed from
within a single function

8.11 The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage.

8.12 When an array is declared with external linkage, its size shall be
stated explicitly or defined implicitly by initialization.

9.3 In an enumerator list, the = construct shall not be used to explicitly
initialize members other than the first, unless all items are explicitly
initialized

11.1 Conversion shall not be performed between a pointer to a function
and any type other than an integral type

11.2 Conversion shall not be performed between a pointer to an object and
any type other than an integral type, another pointer to a object type
or a pointer to void.

11.3 A cast should not be performed between a pointer type and an
integral type.

11.5 Type casting from any type to or from pointers shall not be used
12.2 The value of an expression shall be the same under any order of

evaluation that the standard permits

2-11

2 Coding Rule Sets and Concepts

Rule number Description

12.9 The unary minus operator shall not be applied to an expression
whose underlying type is unsigned

12.10 The comma operator shall not be used
12.12 The underlying bit representations of floating-point values shall not

be used.
14.7 A function shall have a single point of exit at the end of the function.
16.1 Functions shall not be defined with variable numbers of arguments.
16.2 Functions shall not call themselves, either directly or indirectly.
16.3 Identifiers shall be given for all of the parameters in a function

prototype declaration
16.8 All exit paths from a function with non-void return type shall have an

explicit return statement with an expression
16.9 A function identifier shall only be used with either a preceding &, or

with a parenthesized parameter list, which may be empty
17.3 >, >=, <, <= shall not be applied to pointer types except where they

point to the same array.
17.6 The address of an object with automatic storage shall not be assigned

to an object that may persist after the object has ceased to exist.
18.4 Unions shall not be used.
19.9 Arguments to a function-like macro shall not contain tokens that look

like preprocessing directives
19.10 In the definition of a function-like macro each instance of a

parameter shall be enclosed in parentheses unless it is used as the
operand of # or ##

19.11 All macro identifiers in preprocessor directives shall be defined before
use, except in #ifdef and #ifndef preprocessor directives and the
defined() operator

19.12 There shall be at most one occurrence of the # or ## preprocessor
operators in a single macro definition.

20.3 The validity of values passed to library functions shall be checked.

2-12

 Software Quality Objective Subsets (AC AGC)

Note: Polyspace software does not check MISRA rule 20.3 directly.

However, you can check this rule by writing manual stubs that check the validity of
values. For example, the following code checks the validity of an input being greater than
1:

int my_system_library_call(int in) {assert (in>1); if random \

return -1 else return 0; }

For more information about these rules, see MISRA AC AGC Guidelines for the
Application of MISRA-C:2004 in the Context of Automatic Code Generation.

2-13

2 Coding Rule Sets and Concepts

MISRA C:2004 and MISRA AC AGC Coding Rules
In this section...

“Supported MISRA C:2004 and MISRA AC AGC Rules” on page 2-14
“Unsupported MISRA C:2004 and MISRA AC AGC Rules” on page 2-51

Supported MISRA C:2004 and MISRA AC AGC Rules

The following tables list MISRA C:2004 coding rules that the Polyspace coding rules
checker supports. Details regarding how the software checks individual rules and any
limitations on the scope of checking are described in the “Polyspace Specification”
column.

Note: The Polyspace coding rules checker:

• Supports MISRA-C:2004 Technical Corrigendum 1 for rules 4.1, 5.1, 5.3, 6.1, 6.3, 7.1,
9.2, 10.5, 12.6, 13.5, and 15.0.

• Checks rules specified by MISRA AC AGC Guidelines for the Application of MISRA-
C:2004 in the Context of Automatic Code Generation.

The software reports most violations during the compile phase of an analysis. However,
the software detects violations of rules 9.1 (Non-initialized variable), 12.11 (one
of the overflow checks) using -scalar-overflows-checks signed-and-unsigned),
13.7 (dead code), 14.1 (dead code), 16.2 and 21.1 during code analysis, and reports these
violations as run-time errors.

Note: Some violations of rules 13.7 and 14.1 are reported during the compile phase of
analysis.

• “Environment” on page 2-15
• “Language Extensions” on page 2-18
• “Documentation” on page 2-18
• “Character Sets” on page 2-19
• “Identifiers” on page 2-19

2-14

 MISRA C:2004 and MISRA AC AGC Coding Rules

• “Types” on page 2-20
• “Constants” on page 2-21
• “Declarations and Definitions” on page 2-22
• “Initialization” on page 2-25
• “Arithmetic Type Conversion” on page 2-25
• “Pointer Type Conversion” on page 2-30
• “Expressions” on page 2-31
• “Control Statement Expressions” on page 2-35
• “Control Flow” on page 2-38
• “Switch Statements” on page 2-40
• “Functions” on page 2-41
• “Pointers and Arrays” on page 2-43
• “Structures and Unions” on page 2-44
• “Preprocessing Directives” on page 2-44
• “Standard Libraries” on page 2-48
• “Runtime Failures” on page 2-51

Environment

N. MISRA Definition Messages in report file Polyspace Specification

1.1 All code shall conform
to ISO® 9899:1990
“Programming languages -
C”, amended and corrected
by ISO/IEC 9899/COR1:1995,
ISO/IEC 9899/AMD1:1995,
and ISO/IEC 9899/
COR2:1996.

The text All code shall
conform to ISO 9899:1990
Programming languages C,
amended and corrected by
ISO/IEC 9899/COR1:1995,
ISO/IEC 9899/AMD1:1995,
and ISO/IEC 9899/
COR2:1996 precedes each of
the following messages:

• ANSI® C does not allow
‘#include_next'

• ANSI C does not allow
macros with variable
arguments list

All the supported extensions
lead to a violation of this
MISRA rule. Standard
compilation error messages
do not lead to a violation of
this MISRA rule and remain
unchanged.

2-15

2 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification

• ANSI C does not allow
‘#assert’

• ANSI C does not allow
'#unassert'

• ANSI C does not allow
testing assertions

• ANSI C does not allow
'#ident'

• ANSI C does not allow
'#sccs'

• text following '#else'
violates ANSI standard.

• text following '#endif'
violates ANSI standard.

• text following '#else' or
'#endif' violates ANSI
standard.

2-16

 MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification

1.1
(cont.)

 The text All code shall
conform to ISO 9899:1990
Programming languages C,
amended and corrected by
ISO/IEC 9899/COR1:1995,
ISO/IEC 9899/AMD1:1995,
and ISO/IEC 9899/
COR2:1996 precedes each of
the following messages:

• ANSI C90 forbids 'long
long int' type.

• ANSI C90 forbids 'long
double' type.

• ANSI C90 forbids long
long integer constants.

• Keyword 'inline' should
not be used.

• Array of zero size should
not be used.

• Integer constant does not
fit within unsigned long
int.

• Integer constant does not
fit within long int.

• Too many nesting levels
of #includes: N1. The
limit is N0.

• Too many macro
definitions: N1. The limit
is N0.

• Too many nesting levels
for control flow: N1. The
limit is N0.

2-17

2 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification

• Too many enumeration
constants: N1. The limit
is N0.

Language Extensions

N. MISRA Definition Messages in report file Polyspace Specification

2.1 Assembly language shall be
encapsulated and isolated.

Assembly language shall be
encapsulated and isolated.

No warnings if code is
encapsulated in the following:

• asm functions or asm
pragma

• Macros
2.2 Source code shall only use /*

*/ style comments
C++ comments shall not be
used.

C++ comments are handled
as comments but lead to a
violation of this MISRA rule

Note: This rule cannot be
annotated in the source code.

2.3 The character sequence /*
shall not be used within a
comment

The character sequence /*
shall not appear within a
comment.

This rule violation is also
raised when the character
sequence /* inside a C++
comment.

Note: This rule cannot be
annotated in the source code.

Documentation

Rule MISRA Definition Messages in report file Polyspace Specification

3.4 All uses of the #pragma
directive shall be documented
and explained.

All uses of the #pragma
directive shall be
documented and explained.

To check this rule, you must
list the pragmas that are
allowed in source files by
using the option Allowed
pragmas (-allowed-pragmas).
If Polyspace finds a pragma
not in the allowed pragma
list, a violation is raised.

2-18

 MISRA C:2004 and MISRA AC AGC Coding Rules

Character Sets

N. MISRA Definition Messages in report file Polyspace Specification

4.1 Only those escape sequences
which are defined in the ISO
C standard shall be used.

\<character> is not an ISO
C escape sequence Only
those escape sequences
which are defined in the ISO
C standard shall be used.

4.2 Trigraphs shall not be used. Trigraphs shall not be used. Trigraphs are handled and
converted to the equivalent
character but lead to a
violation of the MISRA rule

Identifiers

N. MISRA Definition Messages in report file Polyspace Specification

5.1 Identifiers (internal and
external) shall not rely on the
significance of more than 31
characters

Identifier 'XX' should not
rely on the significance of
more than 31 characters.

All identifiers (global, static
and local) are checked.

5.2 Identifiers in an inner scope
shall not use the same name
as an identifier in an outer
scope, and therefore hide that
identifier.

• Local declaration of XX is
hiding another identifier.

• Declaration of parameter
XX is hiding another
identifier.

Assumes that rule 8.1 is not
violated.

5.3 A typedef name shall be a
unique identifier

{typedef name}'%s' should
not be reused. (already used
as {typedef name} at %s:%d)

Warning when a typedef
name is reused as another
identifier name.

5.4 A tag name shall be a unique
identifier

{tag name}'%s' should not be
reused. (already used as {tag
name} at %s:%d)

Warning when a tag name is
reused as another identifier
name

5.5 No object or function
identifier with a static
storage duration should be
reused.

{static identifier/parameter
name}’%s’ should not be
reused. (already used as
{static identifier/parameter
name} with static storage
duration at %s:%d)

Warning when a static
name is reused as another
identifier name

Bug Finder and Code Prover
check this coding rule

2-19

2 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification

differently. The analyses can
produce different results.

5.6 No identifier in one name
space should have the same
spelling as an identifier in
another name space, with the
exception of structure and
union member names.

{member name}'%s' should
not be reused. (already used
as {member name} at %s:%d)

Warning when an idf in
a namespace is reused in
another namespace

5.7 No identifier name should be
reused.

{identifier}'%s' should not
be reused. (already used as
{identifier} at %s:%d)

No violation reported when:

• Different functions have
parameters with the same
name

• Different functions have
local variables with the
same name

• A function has a local
variable that has the same
name as a parameter of
another function

Types

N. MISRA Definition Messages in report file Polyspace Specification

6.1 The plain char type shall be
used only for the storage and
use of character values

Only permissible operators
on plain chars are '=', '==' or
'!=' operators, explicit casts
to integral types and '?' (for
the 2nd and 3rd operands)

Warning when a plain char is
used with an operator other
than =, ==, !=, explicit casts
to integral types, or as the
second or third operands of
the ? operator.

6.2 Signed and unsigned char
type shall be used only for the
storage and use of numeric
values.

• Value of type plain char
is implicitly converted to
signed char.

• Value of type plain char
is implicitly converted to
unsigned char.

Warning if value of type plain
char is implicitly converted to
value of type signed char or
unsigned char.

2-20

 MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification

• Value of type signed char
is implicitly converted to
plain char.

• Value of type unsigned
char is implicitly
converted to plain char.

6.3 typedefs that indicate size
and signedness should be
used in place of the basic
types

typedefs that indicate size
and signedness should be
used in place of the basic
types.

No warning is given in
typedef definition.

6.4 Bit fields shall only be
defined to be of type unsigned
int or signed int.

Bit fields shall only be
defined to be of type
unsigned int or signed int.

6.5 Bit fields of type signed int
shall be at least 2 bits long.

Bit fields of type signed int
shall be at least 2 bits long.

No warning on anonymous
signed int bitfields of width
0 - Extended to all signed
bitfields of size <= 1 (if Rule
6.4 is violated).

Constants

N. MISRA Definition Messages in report file Polyspace Specification

7.1 Octal constants (other
than zero) and octal escape
sequences shall not be used.

• Octal constants other
than zero and octal
escape sequences shall
not be used.

• Octal constants (other
than zero) should not be
used.

• Octal escape sequences
should not be used.

2-21

2 Coding Rule Sets and Concepts

Declarations and Definitions

N. MISRA Definition Messages in report file Polyspace Specification

8.1 Functions shall have
prototype declarations
and the prototype shall be
visible at both the function
definition and call.

• Function XX has no
complete prototype
visible at call.

• Function XX has no
prototype visible at
definition.

Prototype visible at call must
be complete.

8.2 Whenever an object or
function is declared or
defined, its type shall be
explicitly stated

Whenever an object or
function is declared or
defined, its type shall be
explicitly stated.

8.3 For each function parameter
the type given in the
declaration and definition
shall be identical, and the
return types shall also be
identical.

Definition of function
'XX' incompatible with its
declaration.

Assumes that rule 8.1 is
not violated. The rule is
restricted to compatible
types. Can be turned to Off

8.4 If objects or functions are
declared more than once their
types shall be compatible.

• If objects or functions
are declared more than
once their types shall be
compatible.

• Global declaration
of 'XX' function has
incompatible type with
its definition.

• Global declaration
of 'XX' variable has
incompatible type with
its definition.

Violations of this rule might
be generated during the link
phase.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.5 There shall be no definitions
of objects or functions in a
header file

• Object 'XX' should not be
defined in a header file.

• Function 'XX' should not
be defined in a header
file.

Tentative definitions are
considered as definitions.
For objects with file scope,
tentative definitions are
declarations that:

2-22

 MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification

• Fragment of function
should not be defined in a
header file.

• Do not have initializers.
• Do not have storage class

specifiers, or have the
static specifier

8.6 Functions shall always be
declared at file scope.

Function 'XX' should be
declared at file scope.

8.7 Objects shall be defined at
block scope if they are only
accessed from within a single
function

Object 'XX' should be
declared at block scope.

Restricted to static objects.

8.8 An external object or function
shall be declared in one file
and only one file

Function/Object 'XX' has
external declarations in
multiples files.

Restricted to explicit extern
declarations (tentative
definitions are ignored).

Polyspace considers that
variables or functions
declared extern in a non-
header file violate this rule.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

2-23

2 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification

8.9 Definition: An identifier
with external linkage shall
have exactly one external
definition.

• Procedure/Global
variable XX multiply
defined.

• Forbidden multiple
tentative definitions for
object XX

• Global variable has
multiple tentative
definitions

• Undefined global
variable XX

Tentative definitions are
considered as definitions.
For objects with file scope,
tentative definitions are
declarations that:

• Do not have initializers.
• Do not have storage class

specifiers, or have the
static specifier

No warnings appear on
predefined symbols.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.10 All declarations and
definitions of objects or
functions at file scope shall
have internal linkage unless
external linkage is required

Function/Variable XX
should have internal
linkage.

Assumes that 8.1 is not
violated. No warning if 0
uses.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

8.11 The static storage class
specifier shall be used in
definitions and declarations
of objects and functions that
have internal linkage

static storage class specifier
should be used on internal
linkage symbol XX.

8.12 When an array is declared
with external linkage, its
size shall be stated explicitly
or defined implicitly by
initialization

Size of array 'XX' should be
explicitly stated.

2-24

 MISRA C:2004 and MISRA AC AGC Coding Rules

Initialization

N. MISRA Definition Messages in report file Polyspace Specification

9.1 All automatic variables shall
have been assigned a value
before being used.

 Checked during code
analysis.

Violations displayed as Non-
initialized variable results.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

9.2 Braces shall be used to
indicate and match the
structure in the nonzero
initialization of arrays and
structures.

Braces shall be used to
indicate and match the
structure in the nonzero
initialization of arrays and
structures.

9.3 In an enumerator list, the
= construct shall not be
used to explicitly initialize
members other than the first,
unless all items are explicitly
initialized.

In an enumerator list, the
= construct shall not be
used to explicitly initialize
members other than the
first, unless all items are
explicitly initialized.

Arithmetic Type Conversion

N. MISRA Definition Messages in report file Polyspace Specification

10.1 The value of an expression
of integer type shall not be
implicitly converted to a
different underlying type if:

• it is not a conversion to a
wider integer type of the
same signedness, or

• the expression is complex,
or

• Implicit conversion of the
expression of underlying
type XX to the type
XX that is not a wider
integer type of the same
signedness.

• Implicit conversion of one
of the binary operands
whose underlying types
are XX and XX

ANSI C base types order
(signed char, short, int, long)
defines that T2 is wider than
T1 if T2 is on the right hand
of T1 or T2 = T1. The same
interpretation is applied on
the unsigned version of base
types.

2-25

2 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification

• the expression is not
constant and is a function
argument, or

• the expression is not
constant and is a return
expression

• Implicit conversion of
the binary right hand
operand of underlying
type XX to XX that is not
an integer type.

• Implicit conversion of the
binary left hand operand
of underlying type XX to
XX that is not an integer
type.

An expression of bool or
enum types has int as
underlying type.

Plain char may have signed
or unsigned underlying type
(depending on Polyspace
target configuration or option
setting).

The underlying type of
a simple expression of
struct.bitfield is the base type
used in the bitfield definition,
the bitfield width is not token
into account and it assumes
that only signed | unsigned
int are used for bitfield (Rule
6.4).

This rule violation is not
produced on operations
involving pointers.

2-26

 MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification

10.1
(cont)

 • Implicit conversion of
the binary right hand
operand of underlying
type XX to XX that is not
a wider integer type of
the same signedness or
Implicit conversion of
the binary ? left hand
operand of underlying
type XX to XX, but it is a
complex expression.

• Implicit conversion
of complex integer
expression of underlying
type XX to XX.

• Implicit conversion of
non-constant integer
expression of underlying
type XX in function
return whose expected
type is XX.

• Implicit conversion of
non-constant integer
expression of underlying
type XX as argument
of function whose
corresponding parameter
type is XX.

No violation reported when:

• The implicit conversion is
a type widening, without
change of signedness if
integer

• The expression is an
argument expression or a
return expression

No violation reported when
the following are all true:

• Implicit conversion
applies to a constant
expression and is a type
widening, with a possible
change of signedness if
integer

• The conversion does not
change the representation
of the constant value or
the result of the operation

• The expression is an
argument expression or
a return expression or an
operand expression of a
non-bitwise operator

2-27

2 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification

10.2 The value of an expression
of floating type shall not
be implicitly converted to a
different type if

• it is not a conversion to a
wider floating type, or

• the expression is complex,
or

• the expression is a
function argument, or

• the expression is a return
expression

• Implicit conversion of the
expression from XX to
XX that is not a wider
floating type.

• Implicit conversion of
the binary ? right hand
operand from XX to
XX, but it is a complex
expression.

• Implicit conversion of
the binary ? right hand
operand from XX to
XX that is not a wider
floating type or Implicit
conversion of the binary ?
left hand operand from
XX to XX, but it is a
complex expression.

• Implicit conversion
of complex floating
expression from XX to
XX.

• Implicit conversion of
floating expression of XX
type in function return
whose expected type is
XX.

• Implicit conversion of
floating expression of
XX type as argument
of function whose
corresponding parameter
type is XX.

ANSI C base types order
(float, double) defines that T2
is wider than T1 if T2 is on
the right hand of T1 or T2 =
T1.

No violation reported when:

• The implicit conversion is
a type widening

• The expression is an
argument expression or a
return expression.

2-28

 MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification

10.3 The value of a complex
expression of integer type
may only be cast to a type
that is narrower and of
the same signedness as
the underlying type of the
expression

Complex expression of
underlying type XX may
only be cast to narrower
integer type of same
signedness, however the
destination type is XX.

• ANSI C base types order
(signed char, short, int,
long) defines that T1 is
narrower than T2 if T2
is on the right hand of
T1 or T1 = T2. The same
methodology is applied on
the unsigned version of
base types.

• An expression of bool or
enum types has int as
underlying type.

• Plain char may have
signed or unsigned
underlying type
(depending on target
configuration or option
setting).

• The underlying type of
a simple expression of
struct.bitfield is the base
type used in the bitfield
definition, the bitfield
width is not token into
account and it assumes
that only signed, unsigned
int are used for bitfield
(Rule 6.4).

10.4 The value of a complex
expression of float type may
only be cast to narrower
floating type

Complex expression of XX
type may only be cast to
narrower floating type,
however the destination
type is XX.

ANSI C base types order
(float, double) defines that T1
is narrower than T2 if T2 is
on the right hand of T1 or T2
= T1.

2-29

2 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification

10.5 If the bitwise operator ~ and
<< are applied to an operand
of underlying type unsigned
char or unsigned short, the
result shall be immediately
cast to the underlying type of
the operand

Bitwise [<<|~] is applied to
the operand of underlying
type [unsigned char|
unsigned short], the result
shall be immediately cast to
the underlying type.

10.6 The “U” suffix shall be
applied to all constants of
unsigned types

No explicit 'U suffix on
constants of an unsigned
type.

 Warning when the type
determined from the value
and the base (octal, decimal
or hexadecimal) is unsigned
and there is no suffix u or U.

For example, when the size of
the int and long int data
types is 32 bits, the coding
rule checker will report a
violation of rule 10.6 for the
following line:

int a = 2147483648;

There is a difference between
decimal and hexadecimal
constants when int and
long int are not the same
size.

Pointer Type Conversion

N. MISRA Definition Messages in report file Polyspace Specification

11.1 Conversion shall not be
performed between a pointer
to a function and any type
other than an integral type

Conversion shall not be
performed between a pointer
to a function and any type
other than an integral type.

Casts and implicit
conversions involving a
function pointer.

Casts or implicit conversions
from NULL or (void*)0 do
not give any warning.

2-30

 MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification

11.2 Conversion shall not be
performed between a pointer
to an object and any type
other than an integral type,
another pointer to a object
type or a pointer to void

Conversion shall not be
performed between a pointer
to an object and any type
other than an integral type,
another pointer to a object
type or a pointer to void.

There is also a warning on
qualifier loss

11.3 A cast should not be
performed between a pointer
type and an integral type

A cast should not be
performed between a pointer
type and an integral type.

Exception on zero constant.
Extended to all conversions

11.4 A cast should not be
performed between a pointer
to object type and a different
pointer to object type.

A cast should not be
performed between a pointer
to object type and a different
pointer to object type.

11.5 A cast shall not be performed
that removes any const or
volatile qualification from the
type addressed by a pointer

A cast shall not be
performed that removes any
const or volatile qualification
from the type addressed by a
pointer

Extended to all conversions

Expressions

N. MISRA Definition Messages in report file Polyspace Specification

12.1 Limited dependence
should be placed on C's
operator precedence rules in
expressions

Limited dependence
should be placed on C's
operator precedence rules in
expressions

12.2 The value of an expression
shall be the same under any
order of evaluation that the
standard permits.

• The value of 'sym'
depends on the order of
evaluation.

• The value of volatile
'sym' depends on the
order of evaluation
because of multiple
accesses.

Rule 12.2 check assumes that
no assignment in expressions
that yield a Boolean values
(rule 13.1).

The expression is a simple
expression of symbols. i
= i++; is a violation, but
tab[2] = tab[2]++; is not
a violation.

2-31

2 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification

12.3 The sizeof operator should
not be used on expressions
that contain side effects.

The sizeof operator should
not be used on expressions
that contain side effects.

No warning on volatile
accesses

12.4 The right hand operand of
a logical && or || operator
shall not contain side effects.

The right hand operand of
a logical && or || operator
shall not contain side effects.

No warning on volatile
accesses

12.5 The operands of a logical
&& or || shall be primary-
expressions.

• operand of logical && is
not a primary expression

• operand of logical || is
not a primary expression

• The operands of a
logical && or || shall be
primary-expressions.

During preprocessing,
violations of this rule are
detected on the expressions
in #if directives.

Allowed exception on
associatively (a && b && c),
(a || b || c).

2-32

 MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification

12.6 Operands of logical operators
(&&, || and !) should
be effectively Boolean.
Expression that are
effectively Boolean should
not be used as operands to
operators other than (&&, ||
or !).

• Operand of '!' logical
operator should be
effectively Boolean.

• Left operand of '%s'
logical operator should be
effectively Boolean.

• Right operand of '%s'
logical operator should be
effectively Boolean.

• %s operand of '%s' is
effectively Boolean.
Boolean should not be
used as operands to
operators other than
'&&', '||', '!', '=', '==', '!='
and '?:'.

The operand of a logical
operator should be a Boolean
data type. Although the C
standard does not explicitly
define the Boolean data
type, the standard implicitly
assumes the use of the
Boolean data type.

Some operators may return
Boolean-like expressions, for
example, (var == 0).

Consider the following code:

unsigned char flag;

if (!flag)

The rule checker reports a
violation of rule 12.6:

Operand of '!' logical

operator should be

effectively Boolean.

The operand flag is not a
Boolean but an unsigned
char.

To be compliant with rule
12.6, the code must be
rewritten either as

if (!(flag != 0))

or

if (flag == 0)

The use of the option -
boolean-types may
increase or decrease the

2-33

2 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification

number of warnings
generated.

12.7 Bitwise operators shall not
be applied to operands whose
underlying type is signed

• [~/Left Shift/Right shift/
&] operator applied on
an expression whose
underlying type is
signed.

• Bitwise ~ on operand of
signed underlying type
XX.

• Bitwise [<<|>>] on left
hand operand of signed
underlying type XX.

• Bitwise [& | ^] on two
operands of s

The underlying type for an
integer is signed when:

• it does not have a u or U
suffix

• it is small enough to
fit into a 64 bits signed
number

12.8 The right hand operand of
a shift operator shall lie
between zero and one less
than the width in bits of the
underlying type of the left
hand operand.

• shift amount is negative
• shift amount is bigger

than 64
• Bitwise [<< >>] count out

of range [0 ..X] (width of
the underlying type XX
of the left hand operand -
1)..

The numbers that are
manipulated in preprocessing
directives are 64 bits wide
so that valid shift range is
between 0 and 63

Check is also extended onto
bitfields with the field width
or the width of the base type
when it is within a complex
expression

12.9 The unary minus operator
shall not be applied to an
expression whose underlying
type is unsigned.

• Unary - on operand of
unsigned underlying type
XX.

• Minus operator applied
to an expression whose
underlying type is
unsigned

The underlying type for an
integer is signed when:

• it does not have a u or U
suffix

• it is small enough to
fit into a 64 bits signed
number

12.10 The comma operator shall not
be used.

The comma operator shall
not be used.

2-34

 MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification

12.11 Evaluation of constant
unsigned expression should
not lead to wraparound.

Evaluation of constant
unsigned integer
expressions should not lead
to wrap-around.

12.12 The underlying bit
representations of floating-
point values shall not be
used.

The underlying bit
representations of floating-
point values shall not be
used.

Warning when:

• A float pointer is cast
as a pointer to another
data type. Casting a float
pointer as a pointer to
void does not generate a
warning.

• A float is packed with
another data type. For
example:

union {

 float f;

 int i;

} …

12.13 The increment (++) and
decrement (--) operators
should not be mixed with
other operators in an
expression

The increment (++) and
decrement (--) operators
should not be mixed with
other operators in an
expression

Warning when ++ or --
operators are not used alone.

Control Statement Expressions

N. MISRA Definition Messages in report file Polyspace Specification

13.1 Assignment operators shall
not be used in expressions
that yield Boolean values.

Assignment operators shall
not be used in expressions
that yield Boolean values.

13.2 Tests of a value against zero
should be made explicit,
unless the operand is
effectively Boolean

Tests of a value against zero
should be made explicit,
unless the operand is
effectively Boolean

No warning is given on
integer constants. Example: if
(2)

The use of the option -
boolean-types may

2-35

2 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification

increase or decrease the
number of warnings
generated.

13.3 Floating-point expressions
shall not be tested for
equality or inequality.

Floating-point expressions
shall not be tested for
equality or inequality.

Warning on directs tests only.

13.4 The controlling expression
of a for statement shall not
contain any objects of floating
type

The controlling expression
of a for statement shall
not contain any objects of
floating type

If for index is a variable
symbol, checked that it is not
a float.

2-36

 MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification

13.5 The three expressions of a for
statement shall be concerned
only with loop control

• 1st expression should be
an assignment.

• Bad type for loop counter
(XX).

• 2nd expression should be
a comparison.

• 2nd expression should be
a comparison with loop
counter (XX).

• 3rd expression should
be an assignment of loop
counter (XX).

• 3rd expression: assigned
variable should be the
loop counter (XX).

• The following kinds of for
loops are allowed:

(a) all three expressions
shall be present;

(b) the 2nd and 3rd
expressions shall be
present with prior
initialization of the loop
counter;

(c) all three expressions
shall be empty for a
deliberate infinite loop.

Checked if the for loop
index (V) is a variable
symbol; checked if V is
the last assigned variable
in the first expression (if
present). Checked if, in first
expression, if present, is
assignment of V; checked if
in 2nd expression, if present,
must be a comparison of V;
Checked if in 3rd expression,
if present, must be an
assignment of V.

13.6 Numeric variables being
used within a for loop for
iteration counting should not
be modified in the body of the
loop.

Numeric variables being
used within a for loop for
iteration counting should
not be modified in the body
of the loop.

Detect only direct
assignments if the for loop
index is known and if it is a
variable symbol.

2-37

2 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification

13.7 Boolean operations whose
results are invariant shall not
be permitted

• Boolean operations
whose results are
invariant shall not be
permitted. Expression is
always true.

• Boolean operations
whose results are
invariant shall not be
permitted. Expression is
always false.

• Boolean operations
whose results are
invariant shall not be
permitted.

During compilation, check
comparisons with at least one
constant operand.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

• Bug Finder flags some
violations of this rule
through the Dead
code and Useless if
checkers.

• Code Prover does not use
gray code to flag violations
of this rule.

Control Flow

N. MISRA Definition Messages in report file Polyspace Specification

14.1 There shall be no
unreachable code.

There shall be no
unreachable code.

Bug Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

14.2 All non-null statements shall
either have at lest one side
effect however executed, or
cause control flow to change

• All non-null statements
shall either:

• have at lest one side
effect however executed,
or

• cause control flow to
change

14.3 All non-null statements shall
either

• have at lest one side effect
however executed, or

A null statement shall
appear on a line by itself

We assume that a ';' is a
null statement when it is
the first character on a line
(excluding comments). The
rule is violated when:

2-38

 MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification

• cause control flow to
change

• there are some comments
before it on the same line.

• there is a comment
immediately after it

• there is something else
than a comment after the
';' on the same line.

14.4 The goto statement shall not
be used.

The goto statement shall not
be used.

14.5 The continue statement shall
not be used.

The continue statement
shall not be used.

14.6 For any iteration statement
there shall be at most one
break statement used for loop
termination

For any iteration statement
there shall be at most one
break statement used for
loop termination

14.7 A function shall have a single
point of exit at the end of the
function

A function shall have a
single point of exit at the
end of the function

14.8 The statement forming the
body of a switch, while, do
while or for statement shall
be a compound statement

• The body of a do while
statement shall be a
compound statement.

• The body of a for
statement shall be a
compound statement.

• The body of a switch
statement shall be a
compound statement

2-39

2 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification

14.9 An if (expression) construct
shall be followed by a
compound statement. The
else keyword shall be followed
by either a compound
statement, or another if
statement

• An if (expression)
construct shall be
followed by a compound
statement.

• The else keyword shall
be followed by either a
compound statement, or
another if statement

14.10 All if else if constructs should
contain a final else clause.

All if else if constructs
should contain a final else
clause.

Switch Statements

N. MISRA Definition Messages in report file Polyspace Specification

15.0 Unreachable code is detected
between switch statement
and first case.

Note: This is not a MISRA
C2004 rule.

switch statements syntax
normative restrictions.

Warning on declarations or
any statements before the
first switch case.

Warning on label or jump
statements in the body of
switch cases.

On the following example, the
rule is displayed in the log
file at line 3:

1 ...

2 switch(index) {

3 var = var + 1;

// RULE 15.0

// violated

4case 1: ...

The code between switch
statement and first case
is checked as dead code by
Polyspace. It follows ANSI
standard behavior.

2-40

 MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification

15.1 A switch label shall only
be used when the most
closely-enclosing compound
statement is the body of a
switch statement

A switch label shall only
be used when the most
closely-enclosing compound
statement is the body of a
switch statement

15.2 An unconditional break
statement shall terminate
every non-empty switch
clause

An unconditional break
statement shall terminate
every non-empty switch
clause

Warning for each non-
compliant case clause.

15.3 The final clause of a switch
statement shall be the default
clause

The final clause of a switch
statement shall be the
default clause

15.4 A switch expression should
not represent a value that is
effectively Boolean

A switch expression should
not represent a value that is
effectively Boolean

The use of the option -
boolean-types may
increase the number of
warnings generated.

15.5 Every switch statement shall
have at least one case clause

Every switch statement
shall have at least one case
clause

Functions

N. MISRA Definition Messages in report file Polyspace Specification

16.1 Functions shall not be
defined with variable
numbers of arguments.

Function XX should not be
defined as varargs.

16.2 Functions shall not call
themselves, either directly or
indirectly.

Function %s should not call
itself.

Done by Polyspace software
(Use the call graph in
Polyspace Code Prover).
Polyspace also partially
checks this rule during the
compilation phase.

16.3 Identifiers shall be given
for all of the parameters
in a function prototype
declaration.

Identifiers shall be given
for all of the parameters
in a function prototype
declaration.

Assumes Rule 8.6 is not
violated.

2-41

2 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification

16.4 The identifiers used in the
declaration and definition of
a function shall be identical.

The identifiers used in the
declaration and definition of
a function shall be identical.

Assumes that rules 8.8, 8.1
and 16.3 are not violated.

All occurrences are detected.
16.5 Functions with no

parameters shall be declared
with parameter type void.

Functions with no
parameters shall be declared
with parameter type void.

Definitions are also checked.

16.6 The number of arguments
passed to a function shall
match the number of
parameters.

• Too many arguments to
XX.

• Insufficient number of
arguments to XX.

Assumes that rule 8.1 is not
violated.

16.7 A pointer parameter in a
function prototype should be
declared as pointer to const
if the pointer is not used to
modify the addressed object.

Pointer parameter in a
function prototype should be
declared as pointer to const
if the pointer is not used to
modify the addressed object.

Warning if a non-const
pointer parameter is either
not used to modify the
addressed object or is passed
to a call of a function that
is declared with a const
pointer parameter.

16.8 All exit paths from a function
with non-void return type
shall have an explicit
return statement with an
expression.

Missing return value for
non-void function XX.

Warning when a non-void
function is not terminated
with an unconditional return
with an expression.

16.9 A function identifier shall
only be used with either
a preceding &, or with a
parenthesized parameter list,
which may be empty.

Function identifier XX
should be preceded by a & or
followed by a parameter list.

2-42

 MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification

16.10 If a function returns error
information, then that error
information shall be tested.

If a function returns error
information, then that error
information shall be tested.

Warning if a non-void
function is called and the
returned value is ignored.

No warning if the result of
the call is cast to void.

No check performed for
calls of memcpy, memmove,
memset, strcpy, strncpy,
strcat, or strncat.

Pointers and Arrays

N. MISRA Definition Messages in report file Polyspace Specification

17.1 Pointer arithmetic shall only
be applied to pointers that
address an array or array
element.

Pointer arithmetic shall only
be applied to pointers that
address an array or array
element.

17.2 Pointer subtraction shall only
be applied to pointers that
address elements of the same
array

Pointer subtraction shall
only be applied to pointers
that address elements of the
same array.

17.3 >, >=, <, <= shall not be
applied to pointer types
except where they point to
the same array.

>, >=, <, <= shall not be
applied to pointer types
except where they point to
the same array.

17.4 Array indexing shall be the
only allowed form of pointer
arithmetic.

Array indexing shall be the
only allowed form of pointer
arithmetic.

Warning on operations on
pointers. (p+I, I+p and p-I,
where p is a pointer and I an
integer).

17.5 A type should not contain
more than 2 levels of pointer
indirection

A type should not contain
more than 2 levels of pointer
indirection

17.6 The address of an object with
automatic storage shall not

Pointer to a parameter is an
illegal return value. Pointer

Warning when assigning
address to a global variable,

2-43

2 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification

be assigned to an object that
may persist after the object
has ceased to exist.

to a local is an illegal return
value.

returning a local variable
address, or returning a
parameter address.

Structures and Unions

N. MISRA Definition Messages in report file Polyspace Specification

18.1 All structure or union types
shall be complete at the end
of a translation unit.

All structure or union types
shall be complete at the end
of a translation unit.

Warning for all incomplete
declarations of structs or
unions.

18.2 An object shall not be
assigned to an overlapping
object.

• An object shall not
be assigned to an
overlapping object.

• Destination and source of
XX overlap, the behavior
is undefined.

18.4 Unions shall not be used Unions shall not be used.

Preprocessing Directives

N. MISRA Definition Messages in report file Polyspace Specification

19.1 #include statements in a file
shall only be preceded by
other preprocessors directives
or comments

#include statements in a
file shall only be preceded
by other preprocessors
directives or comments

A message is displayed
when a #include directive
is preceded by other things
than preprocessor directives,
comments, spaces or “new
lines”.

19.2 Nonstandard characters
should not occur in header
file names in #include
directives

• A message is displayed
on characters ', " or /
* between < and > in
#include <filename>

• A message is displayed
on characters ', or /
* between " and " in
#include "filename"

2-44

 MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification

19.3 The #include directive shall
be followed by either a
<filename> or "filename"
sequence.

• '#include' expects
"FILENAME" or
<FILENAME>

• '#include_next' expects
"FILENAME" or
<FILENAME>

19.4 C macros shall only expand
to a braced initializer, a
constant, a parenthesized
expression, a type qualifier,
a storage class specifier, or a
do-while-zero construct.

Macro '<name>' does not
expand to a compliant
construct.

We assume that a macro
definition does not violate
this rule when it expands to:

• a braced construct (not
necessarily an initializer)

• a parenthesized construct
(not necessarily an
expression)

• a number
• a character constant
• a string constant (can

be the result of the
concatenation of string
field arguments and
literal strings)

• the following keywords:
typedef, extern, static,
auto, register, const,
volatile, __asm__ and
__inline__

• a do-while-zero construct
19.5 Macros shall not be #defined

and #undefd within a block.
• Macros shall not be

#define’d within a
block.

• Macros shall not be
#undef’d within a block.

19.6 #undef shall not be used. #undef shall not be used.

2-45

2 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification

19.7 A function should be used in
preference to a function like-
macro.

A function should be used in
preference to a function like-
macro

Message on all function-like
macro definitions.

19.8 A function-like macro shall
not be invoked without all of
its arguments

• arguments given to
macro '<name>'

• macro '<name>' used
without args.

• macro '<name>' used
with just one arg.

• macro '<name>'
used with too many
(<number>) args.

19.9 Arguments to a function-
like macro shall not contain
tokens that look like
preprocessing directives.

Macro argument shall not
look like a preprocessing
directive.

This rule is detected as
violated when the '#'
character appears in a macro
argument (outside a string or
character constant)

19.10 In the definition of a
function-like macro each
instance of a parameter shall
be enclosed in parentheses
unless it is used as the
operand of # or ##.

Parameter instance shall be
enclosed in parentheses.

If x is a macro parameter,
the following instances of x
as an operand of the # and ##
operators do not generate a
warning: #x, ##x, and x##.
Otherwise, parentheses are
required around x.

The software does not
generate a warning if a
parameter is reused as
an argument of a function
or function-like macro.
For example, consider a
parameter x. The software
does not generate a warning
if x appears as (x) or (x, or
,x) or ,x,.

2-46

 MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification

19.11 All macro identifiers in
preprocessor directives
shall be defined before use,
except in #ifdef and #ifndef
preprocessor directives and
the defined() operator.

'<name>' is not defined.

19.12 There shall be at most one
occurrence of the # or ##
preprocessor operators in a
single macro definition.

More than one occurrence
of the # or ## preprocessor
operators.

19.13 The # and ## preprocessor
operators should not be used

Message on definitions
of macros using # or ##
operators

19.14 The defined preprocessor
operator shall only be used
in one of the two standard
forms.

'defined' without an
identifier.

19.15 Precautions shall be taken
in order to prevent the
contents of a header file being
included twice.

Precautions shall be taken
in order to prevent multiple
inclusions.

When a header file is
formatted as,

#ifndef <control macro>

#define <control macro>

<contents> #endif

or,

#ifndef <control macro>

#error ...

#else

#define <control macro>

<contents> #endif

it is assumed that
precautions have been
taken to prevent multiple
inclusions. Otherwise, a
violation of this MISRA rule
is detected.

2-47

2 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification

19.16 Preprocessing directives shall
be syntactically meaningful
even when excluded by the
preprocessor.

directive is not syntactically
meaningful.

19.17 All #else, #elif and #endif
preprocessor directives shall
reside in the same file as the
#if or #ifdef directive to which
they are related.

• '#elif' not within a
conditional.

• '#else' not within a
conditional.

• '#elif' not within a
conditional.

• '#endif' not within a
conditional.

• unbalanced '#endif'.
• unterminated '#if'

conditional.
• unterminated '#ifdef'

conditional.
• unterminated '#ifndef'

conditional.

Standard Libraries

N. MISRA Definition Messages in report file Polyspace Specification

20.1 Reserved identifiers, macros
and functions in the standard
library, shall not be defined,
redefined or undefined.

• The macro '<name> shall
not be redefined.

• The macro '<name> shall
not be undefined.

20.2 The names of standard
library macros, objects and
functions shall not be reused.

Identifier XX should not be
used.

In case a macro whose name
corresponds to a standard
library macro, object or
function is defined, the rule
that is detected as violated is
20.1.

2-48

 MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification

Tentative definitions are
considered as definitions.
For objects with file scope,
tentative definitions are
declarations that:

• Do not have initializers.
• Do not have storage class

specifiers, or have the
static specifier

20.3 The validity of values passed
to library functions shall be
checked.

Validity of values passed to
library functions shall be
checked

Warning for argument in
library function call if the
following are all true:

• Argument is a local
variable

• Local variable is not
tested between last
assignment and call to the
library function

• Library function is a
common mathematical
function

• Corresponding parameter
of the library function has
a restricted input domain.

The library function can be
one of the following : sqrt,
tan, pow, log, log10, fmod,
acos, asin, acosh, atanh,
or atan2.

2-49

2 Coding Rule Sets and Concepts

N. MISRA Definition Messages in report file Polyspace Specification

20.4 Dynamic heap memory
allocation shall not be used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the dynamic heap
memory allocation functions
are actually macros and the
macro is expanded in the
code, this rule is detected as
violated. Assumes rule 20.2 is
not violated.

20.5 The error indicator errno
shall not be used

The error indicator errno
shall not be used

Assumes that rule 20.2 is not
violated

20.6 The macro offsetof, in library
<stddef.h>, shall not be used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

Assumes that rule 20.2 is not
violated

20.7 The setjmp macro and the
longjmp function shall not be
used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the longjmp function
is actually a macro and the
macro is expanded in the
code, this rule is detected as
violated. Assumes that rule
20.2 is not violated

20.8 The signal handling facilities
of <signal.h> shall not be
used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case some of the signal
functions are actually macros
and are expanded in the
code, this rule is detected as
violated. Assumes that rule
20.2 is not violated

20.9 The input/output library
<stdio.h> shall not be used in
production code.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the input/output
library functions are actually
macros and are expanded in
the code, this rule is detected
as violated. Assumes that
rule 20.2 is not violated

2-50

 MISRA C:2004 and MISRA AC AGC Coding Rules

N. MISRA Definition Messages in report file Polyspace Specification

20.10 The library functions atof,
atoi and atoll from library
<stdlib.h> shall not be used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the atof, atoi and atoll
functions are actually macros
and are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

20.11 The library functions abort,
exit, getenv and system from
library <stdlib.h> shall not be
used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the abort, exit,
getenv and system functions
are actually macros and
are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

20.12 The time handling functions
of library <time.h> shall not
be used.

• The macro '<name> shall
not be used.

• Identifier XX should not
be used.

In case the time handling
functions are actually macros
and are expanded, this rule is
detected as violated. Assumes
that rule 20.2 is not violated

Runtime Failures

N. MISRA Definition Messages in report file Polyspace Specification

21.1 Minimization of runtime
failures shall be ensured by
the use of at least one of:

• static verification tools/
techniques;

• dynamic verification tools/
techniques;

• explicit coding of checks to
handle runtime faults.

 Done by Polyspace. Bug
Finder and Code Prover
check this coding rule
differently. The analyses can
produce different results.

Unsupported MISRA C:2004 and MISRA AC AGC Rules

The Polyspace coding rules checker does not check the following MISRA C:2004 coding
rules. These rules cannot be enforced because they are outside the scope of Polyspace
software. They may concern documentation, dynamic aspects, or functional aspects of

2-51

2 Coding Rule Sets and Concepts

MISRA rules. The “Polyspace Specification” column describes the reason each rule is
not checked.

Environment

Rule Description Polyspace Specification

1.2 (Required) No reliance shall be placed on
undefined or unspecified behavior

Not statically checkable unless the data
dynamic properties is taken into account

1.3 (Required) Multiple compilers and/or languages
shall only be used if there is a common
defined interface standard for object
code to which the language/compilers/
assemblers conform.

It is a process rule method.

1.4 (Required) The compiler/linker/Identifiers
(internal and external) shall not rely on
significance of more than 31 characters.
Furthermore the compiler/linker shall
be checked to ensure that 31 character
significance and case sensitivity are
supported for external identifiers.

To observe this rule, check your compiler
documentation.

1.5 (Advisory) Floating point implementations should
comply with a defined floating point
standard.

To observe this rule, check your compiler
documentation.

Language Extensions

Rule Description Polyspace Specification

2.4 (Advisory) Sections of code should not be
“commented out”

One way a tool can check this rule
is to determine if the code compiles
when commented out sections are
uncommented. However, such checking
can be expensive and inaccurate.

Documentation

Rule Description Polyspace Specification

3.1 (Required) All usage of implementation-defined
behavior shall be documented.

To observe this rule, check your compiler
documentation. Error detection is

2-52

 MISRA C:2004 and MISRA AC AGC Coding Rules

Rule Description Polyspace Specification

based on undefined behavior, according
to choices made for implementation-
defined constructions.

3.2 (Required) The character set and the
corresponding encoding shall be
documented.

To observe this rule, check your compiler
documentation.

3.3 (Advisory) The implementation of integer division
in the chosen compiler should be
determined, documented and taken into
account.

To observe this rule, check your compiler
documentation.

3.5 (Required) The implementation-defined behavior
and packing of bitfields shall be
documented if being relied upon.

To observe this rule, check your compiler
documentation.

3.6 (Required) All libraries used in production code
shall be written to comply with the
provisions of this document, and shall
have been subject to appropriate
validation.

To observe this rule, check your compiler
documentation.

Structures and Unions

Rule Description Polyspace Specification

18.3 (Required) An area of memory shall not be reused
for unrelated purposes.

"purpose" is functional design issue.

2-53

2 Coding Rule Sets and Concepts

Polyspace MISRA C:2012 Checker

The Polyspace MISRA C:2012 checker helps you to comply with the MISRA C 2012
coding standard.3

When MISRA C:2012 guidelines are violated, the Polyspace MISRA C:2012 checker
provides messages with information about the violated rule or directive. Most violations
are found during the compile phase of an analysis.

Polyspace Bug Finder can check all the MISRA C:2012 rules and most MISRA C:2012
directives. Polyspace Code Prover does not support checking of the following:

• MISRA C:2012 Directive 4.13
• MISRA C:2012 Rule 22.1 - 22.4 and 22.6

Each guideline is categorized into one of these three categories: mandatory, required,
or advisory. When you set up rule checking, you can select subsets of these categories
to check. For automatically generated code, some rules change categories, including to
one additional category: readability. The Use generated code requirements (-misra3-agc-
mode) option activates the categorization for automatically generated code.

There are additional subsets of MISRA C:2012 guidelines defined by Polyspace called
Software Quality Objectives (SQO) that can have a direct or indirect impact on the
precision of your results. When you set up checking, you can select these subsets. These
subsets are defined in “Software Quality Objective Subsets (C:2012)” on page 2-56.

See Also
Check MISRA C:2012 (-misra3) | Use generated code requirements (-misra3-agc-mode)

Related Examples
• “Activate Coding Rules Checker” on page 3-2
• “Set Up Coding Rules Checking”

More About
• “MISRA C:2012 Directives and Rules”

3. MISRA and MISRA C are registered trademarks of MISRA Ltd., held on behalf of the MISRA
Consortium.

2-54

 Polyspace MISRA C:2012 Checker

• “Software Quality Objective Subsets (C:2012)” on page 2-56

2-55

2 Coding Rule Sets and Concepts

Software Quality Objective Subsets (C:2012)

In this section...

“Guidelines in SQO-Subset1” on page 2-56
“Guidelines in SQO-Subset2” on page 2-57

These subsets of MISRA C:2012 guidelines can have a direct or indirect impact on the
precision of your Polyspace results. When you set up coding rules checking, you can select
these subsets.

Guidelines in SQO-Subset1

Rule Description

8.8 The static storage class specifier shall be used in all declarations of
objects and functions that have internal linkage

8.11 When an array with external linkage is declared, its size should be
explicitly specified

8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and

any other type
11.2 Conversions shall not be performed between a pointer to an incomplete

type and any other type
11.4 A conversion should not be performed between a pointer to object and

an integer type
11.5 A conversion should not be performed from pointer to void into pointer

to object
11.6 A cast shall not be performed between pointer to void and an arithmetic

type
11.7 A cast shall not be performed between pointer to object and a non-

integer arithmetic type
14.1 A loop counter shall not have essentially floating type
14.2 A for loop shall be well-formed
15.1 The goto statement should not be used

2-56

 Software Quality Objective Subsets (C:2012)

Rule Description

15.2 The goto statement shall jump to a label declared later in the same
function

15.3 Any label referenced by a goto statement shall be declared in the same
block, or in any block enclosing the goto statement

15.5 A function should have a single point of exit at the end
17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
18.3 The relational operators >, >=, < and <= shall not be applied to objects

of pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of

pointer type
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to

another object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not

be used

Guidelines in SQO-Subset2

Good design practices generally lead to less code complexity, which can reduce the
number of unproven results in Polyspace Code Prover. The following set of coding
rules enforce good design practices. The SQO-subset2 option checks the rules in SQO-
subset1 and some additional rules.

Rule Description

8.8 The static storage class specifier shall be used in all declarations of
objects and functions that have internal linkage

8.11 When an array with external linkage is declared, its size should be
explicitly specified

8.13 A pointer should point to a const-qualified type whenever possible
11.1 Conversions shall not be performed between a pointer to a function and

any other type

2-57

2 Coding Rule Sets and Concepts

Rule Description

11.2 Conversions shall not be performed between a pointer to an incomplete
type and any other type

11.4 A conversion should not be performed between a pointer to object and
an integer type

11.5 A conversion should not be performed from pointer to void into pointer
to object

11.6 A cast shall not be performed between pointer to void and an arithmetic
type

11.7 A cast shall not be performed between pointer to object and a non-
integer arithmetic type

11.8 A cast shall not remove any const or volatile qualification from the type
pointed to by a pointer

12.1 The precedence of operators within expressions should be made explicit
12.3 The comma operator should not be used
13.2 The value of an expression and its persistent side effects shall be the

same under all permitted evaluation orders
13.4 The result of an assignment operator should not be used
14.1 A loop counter shall not have essentially floating type
14.2 A for loop shall be well-formed
14.4 The controlling expression of an if statement and the controlling

expression of an iteration-statement shall have essentially Boolean type
15.1 The goto statement should not be used
15.2 The goto statement shall jump to a label declared later in the same

function
15.3 Any label referenced by a goto statement shall be declared in the same

block, or in any block enclosing the goto statement
15.5 A function should have a single point of exit at the end
15.6 The body of an iteration- statement or a selection- statement shall be a

compound- statement
15.7 All if … else if constructs shall be terminated with an else statement
16.4 Every switch statement shall have a default label

2-58

 Software Quality Objective Subsets (C:2012)

Rule Description

16.5 A default label shall appear as either the first or the last switch label of
a switch statement

17.1 The features of <starg.h> shall not be used
17.2 Functions shall not call themselves, either directly or indirectly
17.4 All exit paths from a function with non-void return type shall have an

explicit return statement with an expression
18.3 The relational operators >, >=, < and <= shall not be applied to objects

of pointer type except where they point into the same object
18.4 The +, -, += and -= operators should not be applied to an expression of

pointer type
18.5 Declarations should contain no more than two levels of pointer nesting
18.6 The address of an object with automatic storage shall not be copied to

another object that persists after the first object has ceased to exist
19.2 The union keyword should not be used
20.4 A macro shall not be defined with the same name as a keyword
20.6 Tokens that look like a preprocessing directive shall not occur within a

macro argument
20.7 Expressions resulting from the expansion of macro parameters shall be

enclosed in parentheses
20.9 All identifiers used in the controlling expression of #if or #elif

preprocessing directives shall be #define'd before evaluation
20.11 A macro parameter immediately following a # operator shall not

immediately be followed by a ## operator
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not

be used

See Also
Check MISRA C:2012 (-misra3) | Use generated code requirements (-misra3-agc-mode)

Related Examples
• “Activate Coding Rules Checker” on page 3-2

2-59

2 Coding Rule Sets and Concepts

• “Set Up Coding Rules Checking”

More About
• “MISRA C:2012 Directives and Rules”

2-60

 Coding Rule Subsets Checked Early in Analysis

Coding Rule Subsets Checked Early in Analysis

In the initial compilation phase of the analysis, Polyspace checks those coding rules that
do not require the run-time error detection part of the analysis. If you want only those
rules checked, you can perform a much quicker analysis.

The software provides two predefined subsets of rules that it checks earlier in the
analysis for Check MISRA C:2004 (-misra2) , Check MISRA AC AGC (-misra-ac-agc) ,
and Check MISRA C:2012 (-misra3) .

Argument Purpose

single-unit-

rules

Check rules that apply only to single translation units.

If you detect only coding rule violations and select this subset, the
analysis stops after the compilation phase.

system-

decidable-rules

Check rules in the single-unit-rules subset and some rules
that apply to the collective set of program files. The additional rules
are the less complex rules that apply at the integration level. These
rules can be checked only at the integration level because the rules
involve more than one translation unit.

If you detect only coding rule violations and select this subset, the
analysis stops after the linking phase.

To detect only coding rule violations, see “Find Coding Rule Violations” on page 3-15.

MISRA C: 2004 and MISRA AC AGC Rules

The software checks the following rules early in the analysis. The rules that are checked
at a system level and appear only in the system-decidable-rules subset are
indicated by an asterisk.

Environment

Rule Description

1.1* All code shall conform to ISO 9899:1990 "Programming languages - C",
amended and corrected by ISO/IEC 9899/COR1:1995, ISO/IEC 9899/
AMD1:1995, and ISO/IEC 9899/COR2:1996.

2-61

2 Coding Rule Sets and Concepts

Language Extensions

Rule Description

2.1 Assembly language shall be encapsulated and isolated.
2.2 Source code shall only use /* */ style comments.
2.3 The character sequence /* shall not be used within a comment.

Documentation

Rule Description

3.4 All uses of the #pragma directive shall be documented and explained.

Character Sets

Rule Description

4.1 Only those escape sequences which are defined in the ISO C standard shall be
used.

4.2 Trigraphs shall not be used.

Identifiers

Rule Description

5.1* Identifiers (internal and external) shall not rely on the significance of more
than 31 characters.

5.2 Identifiers in an inner scope shall not use the same name as an identifier in
an outer scope, and therefore hide that identifier.

5.3* A typedef name shall be a unique identifier.
5.4* A tag name shall be a unique identifier.
5.5* No object or function identifier with a static storage duration should be

reused.
5.6* No identifier in one name space should have the same spelling as an identifier

in another name space, with the exception of structure and union member
names.

5.7* No identifier name should be reused.

Types

2-62

 Coding Rule Subsets Checked Early in Analysis

Rule Description

6.1 The plain char type shall be used only for the storage and use of character
values.

6.2 Signed and unsigned char type shall be used only for the storage and use of
numeric values.

6.3 typedefs that indicate size and signedness should be used in place of the
basic types.

6.4 Bit fields shall only be defined to be of type unsigned int or signed int.
6.5 Bit fields of type signed int shall be at least 2 bits long.

Constants

Rule Description

7.1 Octal constants (other than zero) and octal escape sequences shall not be used.

Declarations and Definitions

Rule Description

8.1 Functions shall have prototype declarations and the prototype shall be visible
at both the function definition and call.

8.2 Whenever an object or function is declared or defined, its type shall be
explicitly stated.

8.3 For each function parameter the type given in the declaration and definition
shall be identical, and the return types shall also be identical.

8.4* If objects or functions are declared more than once their types shall be
compatible.

8.5 There shall be no definitions of objects or functions in a header file.
8.6 Functions shall always be declared at file scope.
8.7 Objects shall be defined at block scope if they are only accessed from within a

single function.
8.8* An external object or function shall be declared in one file and only one file.
8.9* An identifier with external linkage shall have exactly one external definition.
8.10* All declarations and definitions of objects or functions at file scope shall have

internal linkage unless external linkage is required.

2-63

2 Coding Rule Sets and Concepts

Rule Description

8.11 The static storage class specifier shall be used in definitions and
declarations of objects and functions that have internal linkage

8.12 When an array is declared with external linkage, its size shall be stated
explicitly or defined implicitly by initialization.

Initialization

Rule Description

9.2 Braces shall be used to indicate and match the structure in the nonzero
initialization of arrays and structures.

9.3 In an enumerator list, the = construct shall not be used to explicitly initialize
members other than the first, unless all items are explicitly initialized.

Arithmetic Type Conversion

Rule Description

10.1 The value of an expression of integer type shall not be implicitly converted to a
different underlying type if:

• It is not a conversion to a wider integer type of the same signedness, or
• The expression is complex, or
• The expression is not constant and is a function argument, or
• The expression is not constant and is a return expression

10.2 The value of an expression of floating type shall not be implicitly converted to
a different type if

• It is not a conversion to a wider floating type, or
• The expression is complex, or
• The expression is a function argument, or
• The expression is a return expression

10.3 The value of a complex expression of integer type may only be cast to a type
that is narrower and of the same signedness as the underlying type of the
expression.

10.4 The value of a complex expression of float type may only be cast to narrower
floating type.

2-64

 Coding Rule Subsets Checked Early in Analysis

Rule Description

10.5 If the bitwise operator ~ and << are applied to an operand of underlying type
unsigned char or unsigned short, the result shall be immediately cast to
the underlying type of the operand

10.6 The "U" suffix shall be applied to all constants of unsigned types.

Pointer Type Conversion

Rule Description

11.1 Conversion shall not be performed between a pointer to a function and any
type other than an integral type.

11.2 Conversion shall not be performed between a pointer to an object and any type
other than an integral type, another pointer to a object type or a pointer to
void.

11.3 A cast should not be performed between a pointer type and an integral type.
11.4 A cast should not be performed between a pointer to object type and a

different pointer to object type.
11.5 A cast shall not be performed that removes any const or volatile

qualification from the type addressed by a pointer

Expressions

Rule Description

12.1 Limited dependence should be placed on C's operator precedence rules in
expressions.

12.3 The sizeof operator should not be used on expressions that contain side
effects.

12.5 The operands of a logical && or || shall be primary-expressions.
12.6 Operands of logical operators (&&, || and !) should be effectively Boolean.

Expression that are effectively Boolean should not be used as operands to
operators other than (&&, || or !).

12.7 Bitwise operators shall not be applied to operands whose underlying type is
signed.

12.9 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned.

2-65

2 Coding Rule Sets and Concepts

Rule Description

12.10 The comma operator shall not be used.
12.11 Evaluation of constant unsigned expression should not lead to wraparound.
12.12 The underlying bit representations of floating-point values shall not be used.
12.13 The increment (++) and decrement (--) operators should not be mixed with

other operators in an expression

Control Statement Expressions

Rule Description

13.1 Assignment operators shall not be used in expressions that yield Boolean
values.

13.2 Tests of a value against zero should be made explicit, unless the operand is
effectively Boolean.

13.3 Floating-point expressions shall not be tested for equality or inequality.
13.4 The controlling expression of a for statement shall not contain any objects of

floating type.
13.5 The three expressions of a for statement shall be concerned only with loop

control.
13.6 Numeric variables being used within a for loop for iteration counting should

not be modified in the body of the loop.

Control Flow

Rule Description

14.3 All non-null statements shall either

• have at least one side effect however executed, or
• cause control flow to change.

14.4 The goto statement shall not be used.
14.5 The continue statement shall not be used.
14.6 For any iteration statement, there shall be at most one break statement used

for loop termination.
14.7 A function shall have a single point of exit at the end of the function.

2-66

 Coding Rule Subsets Checked Early in Analysis

Rule Description

14.8 The statement forming the body of a switch, while, do while or for
statement shall be a compound statement.

14.9 An if (expression) construct shall be followed by a compound statement. The
else keyword shall be followed by either a compound statement, or another
if statement.

14.10 All if else if constructs should contain a final else clause.

Switch Statements

Rule Description

15.0 Unreachable code is detected between switch statement and first case.
15.1 A switch label shall only be used when the most closely-enclosing compound

statement is the body of a switch statement
15.2 An unconditional break statement shall terminate every non-empty switch

clause.
15.3 The final clause of a switch statement shall be the default clause.
15.4 A switch expression should not represent a value that is effectively Boolean.
15.5 Every switch statement shall have at least one case clause.

Functions

Rule Description

16.1 Functions shall not be defined with variable numbers of arguments.
16.3 Identifiers shall be given for all of the parameters in a function prototype

declaration.
16.4* The identifiers used in the declaration and definition of a function shall be

identical.
16.5 Functions with no parameters shall be declared with parameter type void.
16.6 The number of arguments passed to a function shall match the number of

parameters.
16.8 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression.

2-67

2 Coding Rule Sets and Concepts

Rule Description

16.9 A function identifier shall only be used with either a preceding &, or with a
parenthesized parameter list, which may be empty.

Pointers and Arrays

Rule Description

17.4 Array indexing shall be the only allowed form of pointer arithmetic.
17.5 A type should not contain more than 2 levels of pointer indirection.

Structures and Unions

Rule Description

18.1 All structure or union types shall be complete at the end of a translation unit.
18.4 Unions shall not be used.

Preprocessing Directives

Rule Description

19.1 #include statements in a file shall only be preceded by other preprocessors
directives or comments.

19.2 Nonstandard characters should not occur in header file names in #include
directives.

19.3 The #include directive shall be followed by either a <filename> or "filename"
sequence.

19.4 C macros shall only expand to a braced initializer, a constant, a parenthesized
expression, a type qualifier, a storage class specifier, or a do-while-zero
construct.

19.5 Macros shall not be #defined and #undefd within a block.
19.6 #undef shall not be used.
19.7 A function should be used in preference to a function like-macro.
19.8 A function-like macro shall not be invoked without all of its arguments.
19.9 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives.

2-68

 Coding Rule Subsets Checked Early in Analysis

Rule Description

19.10 In the definition of a function-like macro, each instance of a parameter shall
be enclosed in parentheses unless it is used as the operand of # or ##.

19.11 All macro identifiers in preprocessor directives shall be defined before use,
except in #ifdef and #ifndef preprocessor directives and the defined()
operator.

19.12 There shall be at most one occurrence of the # or ## preprocessor operators in
a single macro definition.

19.13 The # and ## preprocessor operators should not be used.
19.14 The defined preprocessor operator shall only be used in one of the two

standard forms.
19.15 Precautions shall be taken in order to prevent the contents of a header file

being included twice.
19.16 Preprocessing directives shall be syntactically meaningful even when excluded

by the preprocessor.
19.17 All #else, #elif and #endif preprocessor directives shall reside in the same

file as the #if or #ifdef directive to which they are related.

Standard Libraries

Rule Description

20.1 Reserved identifiers, macros and functions in the standard library, shall not
be defined, redefined or undefined.

20.2 The names of standard library macros, objects and functions shall not be
reused.

20.4 Dynamic heap memory allocation shall not be used.
20.5 The error indicator errno shall not be used.
20.6 The macro offsetof, in library <stddef.h>, shall not be used.
20.7 The setjmp macro and the longjmp function shall not be used.
20.8 The signal handling facilities of <signal.h> shall not be used.
20.9 The input/output library <stdio.h> shall not be used in production code.
20.10 The library functions atof, atoi and atoll from library <stdlib.h> shall

not be used.

2-69

2 Coding Rule Sets and Concepts

Rule Description

20.11 The library functions abort, exit, getenv and system from library
<stdlib.h> shall not be used.

20.12 The time handling functions of library <time.h> shall not be used.

The rules that are checked at a system level and appear only in the system-
decidable-rules subset are indicated by an asterisk.

MISRA C: 2012 Rules

The software checks the following rules early in the analysis. The rules that are checked
at a system level and appear only in the system-decidable-rules subset are
indicated by an asterisk.

Standard C Environment

Rule Description

1.1 The program shall contain no violations of the standard C syntax and
constraints, and shall not exceed the implementation's translation limits.

1.2 Language extensions should not be used.

Unused Code

Rule Description

2.3* A project should not contain unused type declarations.
2.4* A project should not contain unused tag declarations.
2.5* A project should not contain unused macro declarations.
2.6 A function should not contain unused label declarations.
2.7 There should be no unused parameters in functions.

Comments

Rule Description

3.1 The character sequences /* and // shall not be used within a comment.
3.2 Line-splicing shall not be used in // comments.

2-70

 Coding Rule Subsets Checked Early in Analysis

Character Sets and Lexical Conventions

Rule Description

4.1 Octal and hexadecimal escape sequences shall be terminated.
4.2 Trigraphs should not be used.

Identifiers

Rule Description

5.1* External identifiers shall be distinct.
5.2 Identifiers declared in the same scope and name space shall be distinct.
5.3 An identifier declared in an inner scope shall not hide an identifier declared in

an outer scope.
5.4 Macro identifiers shall be distinct.
5.5 Identifiers shall be distinct from macro names.
5.6* A typedef name shall be a unique identifier.
5.7* A tag name shall be a unique identifier.
5.8* Identifiers that define objects or functions with external linkage shall be

unique.
5.9* Identifiers that define objects or functions with internal linkage should be

unique.

Types

Rule Description

6.1 Bit-fields shall only be declared with an appropriate type.
6.2 Single-bit named bit fields shall not be of a signed type.

Literals and Constants

Rule Description

7.1 Octal constants shall not be used.
7.2 A "u" or "U" suffix shall be applied to all integer constants that are

represented in an unsigned type.
7.3 The lowercase character "l" shall not be used in a literal suffix.

2-71

2 Coding Rule Sets and Concepts

Rule Description

7.4 A string literal shall not be assigned to an object unless the object's type is
"pointer to const-qualified char".

Declarations and Definitions

Rule Description

8.1 Types shall be explicitly specified.
8.2 Function types shall be in prototype form with named parameters.
8.3* All declarations of an object or function shall use the same names and type

qualifiers.
8.4 A compatible declaration shall be visible when an object or function with

external linkage is defined.
8.5* An external object or function shall be declared once in one and only one file.
8.6* An identifier with external linkage shall have exactly one external definition.
8.7* Functions and objects should not be defined with external linkage if they are

referenced in only one translation unit.
8.8 The static storage class specifier shall be used in all declarations of objects

and functions that have internal linkage.
8.9* An object should be defined at block scope if its identifier only appears in a

single function.
8.10 An inline function shall be declared with the static storage class.
8.11 When an array with external linkage is declared, its size should be explicitly

specified.
8.12 Within an enumerator list, the value of an implicitly-specified enumeration

constant shall be unique.
8.14 The restrict type qualifier shall not be used.

Initialization

Rule Description

9.2 The initializer for an aggregate or union shall be enclosed in braces.
9.3 Arrays shall not be partially initialized.
9.4 An element of an object shall not be initialized more than once.

2-72

 Coding Rule Subsets Checked Early in Analysis

Rule Description

9.5 Where designated initializers are used to initialize an array object the size of
the array shall be specified explicitly.

The Essential Type Model

Rule Description

10.1 Operands shall not be of an inappropriate essential type.
10.2 Expressions of essentially character type shall not be used inappropriately in

addition and subtraction operations.
10.3 The value of an expression shall not be assigned to an object with a narrower

essential type or of a different essential type category.
10.4 Both operands of an operator in which the usual arithmetic conversions are

performed shall have the same essential type category.
10.5 The value of an expression should not be cast to an inappropriate essential

type.
10.6 The value of a composite expression shall not be assigned to an object with

wider essential type.
10.7 If a composite expression is used as one operand of an operator in which the

usual arithmetic conversions are performed then the other operand shall not
have wider essential type.

10.8 The value of a composite expression shall not be cast to a different essential
type category or a wider essential type.

Pointer Type Conversion

Rule Description

11.1 Conversions shall not be performed between a pointer to a function and any
other type.

11.2 Conversions shall not be performed between a pointer to an incomplete type
and any other type.

11.3 A cast shall not be performed between a pointer to object type and a pointer to
a different object type.

11.4 A conversion should not be performed between a pointer to object and an
integer type.

2-73

2 Coding Rule Sets and Concepts

Rule Description

11.5 A conversion should not be performed from pointer to void into pointer to
object.

11.6 A cast shall not be performed between pointer to void and an arithmetic type.
11.7 A cast shall not be performed between pointer to object and a non-integer

arithmetic type.
11.8 A cast shall not remove any const or volatile qualification from the type

pointed to by a pointer.
11.9 The macro NULL shall be the only permitted form of integer null pointer

constant.

Expressions

Rule Description

12.1 The precedence of operators within expressions should be made explicit.
12.3 The comma operator should not be used.
12.4 Evaluation of constant expressions should not lead to unsigned integer wrap-

around.

Side Effects

Rule Description

13.3 A full expression containing an increment (++) or decrement (--) operator
should have no other potential side effects other than that caused by the
increment or decrement operator.

13.4 The result of an assignment operator should not be used.
13.6 The operand of the sizeof operator shall not contain any expression which

has potential side effects.

Control Statement Expressions

Rule Description

14.4 The controlling expression of an if statement and the controlling expression
of an iteration-statement shall have essentially Boolean type.

Control Flow

2-74

 Coding Rule Subsets Checked Early in Analysis

Rule Description

15.1 The goto statement should not be used.
15.2 The goto statement shall jump to a label declared later in the same function.
15.3 Any label referenced by a goto statement shall be declared in the same block,

or in any block enclosing the goto statement.
15.4 There should be no more than one break or goto statement used to terminate

any iteration statement.
15.5 A function should have a single point of exit at the end
15.6 The body of an iteration-statement or a selection-statement shall be a

compound statement.
15.7 All if … else if constructs shall be terminated with an else statement.

Switch Statements

Rule Description

16.1 All switch statements shall be well-formed.
16.2 A switch label shall only be used when the most closely-enclosing compound

statement is the body of a switch statement.
16.3 An unconditional break statement shall terminate every switch-clause.
16.4 Every switch statement shall have a default label.
16.5 A default label shall appear as either the first or the last switch label of a

switch statement.
16.6 Every switch statement shall have at least two switch-clauses.
16.7 A switch-expression shall not have essentially Boolean type.

Functions

Rule Description

17.1 The features of <starg.h> shall not be used.
17.3 A function shall not be declared implicitly.
17.4 All exit paths from a function with non-void return type shall have an explicit

return statement with an expression.
17.6 The declaration of an array parameter shall not contain the static keyword

between the [].

2-75

2 Coding Rule Sets and Concepts

Rule Description

17.7 The value returned by a function having non-void return type shall be used.

Pointers and Arrays

Rule Description

18.4 The +, -, += and -= operators should not be applied to an expression of pointer
type.

18.5 Declarations should contain no more than two levels of pointer nesting.
18.7 Flexible array members shall not be declared.
18.8 Variable-length array types shall not be used.

Overlapping Storage

Rule Description

19.2 The union keyword should not be used.

Preprocessing Directives

Rule Description

20.1 #include directives should only be preceded by preprocessor directives or
comments.

20.2 The ', ", or \ characters and the /* or // character sequences shall not occur
in a header file name.

20.3 The #include directive shall be followed by either a <filename> or \"filename
\" sequence.

20.4 A macro shall not be defined with the same name as a keyword.
20.5 #undef should not be used.
20.6 Tokens that look like a preprocessing directive shall not occur within a macro

argument.
20.7 Expressions resulting from the expansion of macro parameters shall be

enclosed in parentheses.
20.8 The controlling expression of a #if or #elif preprocessing directive shall

evaluate to 0 or 1.

2-76

 Coding Rule Subsets Checked Early in Analysis

Rule Description

20.9 All identifiers used in the controlling expression of #if or #elif
preprocessing directives shall be #define'd before evaluation.

20.10 The # and ## preprocessor operators should not be used.
20.11 A macro parameter immediately following a # operator shall not immediately

be followed by a ## operator.
20.12 A macro parameter used as an operand to the # or ## operators, which is itself

subject to further macro replacement, shall only be used as an operand to
these operators.

20.13 A line whose first token is # shall be a valid preprocessing directive.
20.14 All #else, #elif and #endif preprocessor directives shall reside in the same

file as the #if, #ifdef or #ifndef directive to which they are related.

Standard Libraries

Rule Description

21.1 #define and #undef shall not be used on a reserved identifier or reserved
macro name.

21.2 A reserved identifier or macro name shall not be declared.
21.3 The memory allocation and deallocation functions of <stdlib.h> shall not be

used.
21.4 The standard header file <setjmp.h> shall not be used.
21.5 The standard header file <signal.h> shall not be used.
21.6 The Standard Library input/output functions shall not be used.
21.7 The atof, atoi, atol, and atoll functions of <stdlib.h> shall not be used.
21.8 The library functions abort, exit, getenv and system of <stdlib.h> shall

not be used.
21.9 The library functions bsearch and qsort of <stdlib.h> shall not be used.
21.10 The Standard Library time and date functions shall not be used.
21.11 The standard header file <tgmath.h> shall not be used.
21.12 The exception handling features of <fenv.h> should not be used.

2-77

2 Coding Rule Sets and Concepts

The rules that are checked at a system level and appear only in the system-
decidable-rules subset are indicated by an asterisk.

2-78

 Unsupported MISRA C:2012 Guidelines

Unsupported MISRA C:2012 Guidelines

The Polyspace coding rules checker does not check the following MISRA C:2012 coding
rules. These rules cannot be enforced because they are outside the scope of Polyspace
software. These guidelines concern documentation, dynamic aspects, or functional
aspects of MISRA rules.

Number Category AGC
Category

Definition

Directive
1.1

Required Required Any implementation-defined behavior on which the
output of the program depends shall be documented and
understood

Directive
3.1

Required Required All code shall be traceable to documented requirements

Directive
4.2

Advisory Advisory All usage of assembly language should be documented

Directive
4.4

Advisory Advisory Sections of code should not be “commented out”

Directive
4.7

Required Required If a function returns error information, then that error
information shall be tested

Directive
4.8

Advisory Advisory If a pointer to a structure or union is never dereferenced
within a translation unit, then the implementation of the
object should be hidden

Directive
4.12

Required Required Dynamic memory allocation shall not be used

2-79

2 Coding Rule Sets and Concepts

Polyspace MISRA C++ Checker

The Polyspace MISRA C++ checker helps you comply with the MISRA C++:2008 coding
standard.4

When MISRA C++ rules are violated, the Polyspace software provides messages with
information about why the code violates the rule. Most violations are found during the
compile phase of an analysis. The MISRA C++ checker can check 192 of the 228 MISRA
C++ coding rules.

There are subsets of MISRA C++ coding rules that can have a direct or indirect impact
on the selectivity (reliability percentage) of your results. When you set up rule checking,
you can select these subsets directly. These subsets are defined in “Software Quality
Objective Subsets (C++)” on page 2-81.

Note: The Polyspace MISRA C++ checker is based on MISRA C++:2008 – “Guidelines for
the use of the C++ language in critical systems." For more information on these coding
standards, see http://www.misra-cpp.com.

4. MISRA is a registered trademark of MISRA Ltd., held on behalf of the MISRA Consortium.

2-80

http://www.misra-cpp.com/

 Software Quality Objective Subsets (C++)

Software Quality Objective Subsets (C++)
In this section...

“SQO Subset 1 – Direct Impact on Selectivity” on page 2-81
“SQO Subset 2 – Indirect Impact on Selectivity” on page 2-83

SQO Subset 1 – Direct Impact on Selectivity

The following set of coding rules will typically improve the selectivity of your results.

MISRA C++ Rule Description

2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in
an outer scope.

3-1-3 When an array is declared, its size shall either be stated explicitly or defined
implicitly by initialization.

3-3-2 The One Definition Rule shall not be violated.
3-9-3 The underlying bit representations of floating-point values shall not be used.
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they

point to the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer

indirection.
5-2-8 An object with integer type or pointer to void type shall not be converted to an

object with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for equality

or inequality.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating

type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-

counter shall only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n

remains constant for the duration of the loop.

2-81

2 Coding Rule Sets and Concepts

MISRA C++ Rule Description

6-6-1 Any label referenced by a goto statement shall be declared in the same block,
or in a block enclosing the goto statement.

6-6-2 The goto statement shall jump to a label declared later in the same function
body.

6-6-4 For any iteration statement there shall be no more than one break or goto
statement used for loop termination.

6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable

(including parameters), defined within the function.
7-5-2 The address of an object with automatic storage shall not be assigned to

another object that may persist after the first object has ceased to exist.
7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
9-5-1 Unions shall not be used.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same

hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each

path through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is

itself declared as pure virtual.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a

switch statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a

catch handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or

destructor shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.

2-82

 Software Quality Objective Subsets (C++)

MISRA C++ Rule Description

15-3-6 Where multiple handlers are provided in a single try-catch statement or
function-try-block for a derived class and some or all of its bases, the handlers
shall be ordered most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or
function-try-block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations
of the same function (in other translation units) shall be declared with the
same set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the function

shall only be capable of throwing exceptions of the indicated type(s).
18-4-1 Dynamic heap memory allocation shall not be used.

SQO Subset 2 – Indirect Impact on Selectivity

Good design practices generally lead to less code complexity, which can improve the
selectivity of your results. The following set of coding rules may help to address design
issues that impact selectivity. The SQO-subset2 option checks the rules in SQO-
subset1 and SQO-subset2.

MISRA C++ Rule Description

2-10-2 Identifiers declared in an inner scope shall not hide an identifier declared in
an outer scope.

3-1-3 When an array is declared, its size shall either be stated explicitly or defined
implicitly by initialization.

3-3-2 If a function has internal linkage then all re-declarations shall include the
static storage class specifier.

3-4-1 An identifier declared to be an object or type shall be defined in a block that
minimizes its visibility.

3-9-2 typedefs that indicate size and signedness should be used in place of the basic
numerical types.

3-9-3 The underlying bit representations of floating-point values shall not be used.
4-5-1 Expressions with type bool shall not be used as operands to built-in operators

other than the assignment operator =, the logical operators &&, ||, !, the

2-83

2 Coding Rule Sets and Concepts

MISRA C++ Rule Description

equality operators == and !=, the unary & operator, and the conditional
operator.

5-0-1 The value of an expression shall be the same under any order of evaluation
that the standard permits.

5-0-2 Limited dependence should be placed on C++ operator precedence rules in
expressions.

5-0-7 There shall be no explicit floating-integral conversions of a cvalue expression.
5-0-8 An explicit integral or floating-point conversion shall not increase the size of

the underlying type of a cvalue expression.
5-0-9 An explicit integral conversion shall not change the signedness of the

underlying type of a cvalue expression.
5-0-10 If the bitwise operators ~ and << are applied to an operand with an

underlying type of unsigned char or unsigned short, the result shall be
immediately cast to the underlying type of the operand.

5-0-13
5-0-15 Array indexing shall be the only form of pointer arithmetic.
5-0-18 >, >=, <, <= shall not be applied to objects of pointer type, except where they

point to the same array.
5-0-19 The declaration of objects shall contain no more than two levels of pointer

indirection.
5-2-1 Each operand of a logical && or || shall be a postfix - expression.
5-2-2 A pointer to a virtual base class shall only be cast to a pointer to a derived

class by means of dynamic_cast.
5-2-5 A cast shall not remove any const or volatile qualification from the type of a

pointer or reference.
5-2-6 A cast shall not convert a pointer to a function to any other pointer type,

including a pointer to function type.
5-2-7 An object with pointer type shall not be converted to an unrelated pointer

type, either directly or indirectly.
5-2-8 An object with integer type or pointer to void type shall not be converted to an

object with pointer type.
5-2-9 A cast should not convert a pointer type to an integral type.

2-84

 Software Quality Objective Subsets (C++)

MISRA C++ Rule Description

5-2-11 The comma operator, && operator and the || operator shall not be
overloaded.

5-3-2 The unary minus operator shall not be applied to an expression whose
underlying type is unsigned.

5-3-3 The unary & operator shall not be overloaded.
5-18-1 The comma operator shall not be used.
6-2-1 Assignment operators shall not be used in sub-expressions.
6-2-2 Floating-point expressions shall not be directly or indirectly tested for

equality or inequality.
6-3-1 The statement forming the body of a switch, while, do ... while or for

statement shall be a compound statement.
6-4-2 All if ... else if constructs shall be terminated with an else clause.
6-4-6 The final clause of a switch statement shall be the default-clause.
6-5-1 A for loop shall contain a single loop-counter which shall not have floating

type.
6-5-2 If loop-counter is not modified by -- or ++, then, within condition, the loop-

counter shall only be used as an operand to <=, <, > or >=.
6-5-3 The loop-counter shall not be modified within condition or statement.
6-5-4 The loop-counter shall be modified by one of: --, ++, -=n, or +=n ; where n

remains constant for the duration of the loop.
6-6-1 Any label referenced by a goto statement shall be declared in the same block,

or in a block enclosing the goto statement.
6-6-2 The goto statement shall jump to a label declared later in the same function

body.
6-6-4 For any iteration statement there shall be no more than one break or goto

statement used for loop termination.
6-6-5 A function shall have a single point of exit at the end of the function.
7-5-1 A function shall not return a reference or a pointer to an automatic variable

(including parameters), defined within the function.
7-5-2 The address of an object with automatic storage shall not be assigned to

another object that may persist after the first object has ceased to exist.

2-85

2 Coding Rule Sets and Concepts

MISRA C++ Rule Description

7-5-4 Functions should not call themselves, either directly or indirectly.
8-4-1 Functions shall not be defined using the ellipsis notation.
8-4-3 All exit paths from a function with non- void return type shall have an

explicit return statement with an expression.
8-4-4 A function identifier shall either be used to call the function or it shall be

preceded by &.
8-5-2 Braces shall be used to indicate and match the structure in the non- zero

initialization of arrays and structures.
8-5-3 In an enumerator list, the = construct shall not be used to explicitly initialize

members other than the first, unless all items are explicitly initialized.
10-1-2 A base class shall only be declared virtual if it is used in a diamond hierarchy.
10-1-3 An accessible base class shall not be both virtual and nonvirtual in the same

hierarchy.
10-3-1 There shall be no more than one definition of each virtual function on each

path through the inheritance hierarchy.
10-3-2 Each overriding virtual function shall be declared with the virtual keyword.
10-3-3 A virtual function shall only be overridden by a pure virtual function if it is

itself declared as pure virtual.
11-0-1 Member data in non- POD class types shall be private.
12-1-1 An object's dynamic type shall not be used from the body of its constructor or

destructor.
12-8-2 The copy assignment operator shall be declared protected or private in an

abstract class.
15-0-3 Control shall not be transferred into a try or catch block using a goto or a

switch statement.
15-1-3 An empty throw (throw;) shall only be used in the compound- statement of a

catch handler.
15-3-3 Handlers of a function-try-block implementation of a class constructor or

destructor shall not reference non-static members from this class or its bases.
15-3-5 A class type exception shall always be caught by reference.

2-86

 Software Quality Objective Subsets (C++)

MISRA C++ Rule Description

15-3-6 Where multiple handlers are provided in a single try-catch statement or
function-try-block for a derived class and some or all of its bases, the handlers
shall be ordered most-derived to base class.

15-3-7 Where multiple handlers are provided in a single try-catch statement or
function-try-block, any ellipsis (catch-all) handler shall occur last.

15-4-1 If a function is declared with an exception-specification, then all declarations
of the same function (in other translation units) shall be declared with the
same set of type-ids.

15-5-1 A class destructor shall not exit with an exception.
15-5-2 Where a function's declaration includes an exception-specification, the

function shall only be capable of throwing exceptions of the indicated type(s).
16-0-5 Arguments to a function-like macro shall not contain tokens that look like

preprocessing directives.
16-0-6 In the definition of a function-like macro, each instance of a parameter shall

be enclosed in parentheses, unless it is used as the operand of # or ##.
16-0-7 Undefined macro identifiers shall not be used in #if or #elif preprocessor

directives, except as operands to the defined operator.
16-2-2 C++ macros shall only be used for: include guards, type qualifiers, or storage

class specifiers.
16-3-1 There shall be at most one occurrence of the # or ## operators in a single

macro definition.
18-4-1 Dynamic heap memory allocation shall not be used.

2-87

2 Coding Rule Sets and Concepts

MISRA C++ Coding Rules
In this section...

“Supported MISRA C++ Coding Rules” on page 2-88
“Unsupported MISRA C++ Rules” on page 2-110

Supported MISRA C++ Coding Rules

• “Language Independent Issues” on page 2-88
• “General” on page 2-89
• “Lexical Conventions” on page 2-90
• “Basic Concepts” on page 2-91
• “Standard Conversions” on page 2-93
• “Expressions” on page 2-93
• “Statements” on page 2-97
• “Declarations” on page 2-100
• “Declarators” on page 2-101
• “Classes” on page 2-102
• “Derived Classes” on page 2-103
• “Member Access Control” on page 2-103
• “Special Member Functions” on page 2-103
• “Templates” on page 2-104
• “Exception Handling” on page 2-105
• “Preprocessing Directives” on page 2-107
• “Library Introduction” on page 2-109
• “Language Support Library” on page 2-109
• “Diagnostic Library” on page 2-110
• “Input/output Library” on page 2-110

Language Independent Issues

N. Category MISRA Definition Polyspace Specification

0-1-1 Required A project shall not contain
unreachable code.

Bug Finder and Code Prover check
this coding rule differently. The

2-88

 MISRA C++ Coding Rules

N. Category MISRA Definition Polyspace Specification

analyses can produce different
results.

0-1-2 Required A project shall not contain infeasible
paths.

0-1-7 Required The value returned by a function
having a non- void return type that
is not an overloaded operator shall
always be used.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

0-1-9 Required There shall be no dead code. This rule can also be enforced
through detection of dead code
during analysis.

0-1-10 Required Every defined function shall be
called at least once.

Detects if static functions are not
called in their translation unit.
Other cases are detected by the
software.

0-1-11 Required There shall be no unused
parameters (named or unnamed) in
nonvirtual functions.

0-1-12 Required There shall be no unused
parameters (named or unnamed) in
the set of parameters for a virtual
function and all the functions that
override it.

Polyspace checks for unused
parameters in the set of virtual
functions within single translation
units.

0-2-1 Required An object shall not be assigned to an
overlapping object.

General

N. Category MISRA Definition Polyspace Specification

1-0-1 Required All code shall conform to ISO/
IEC 14882:2003 "The C++
Standard Incorporating Technical
Corrigendum 1".

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-89

2 Coding Rule Sets and Concepts

Lexical Conventions

N. Category MISRA Definition Polyspace Specification

2-3-1 Required Trigraphs shall not be used.
2-5-1 Advisory Digraphs should not be used.
2-7-1 Required The character sequence /* shall not

be used within a C-style comment.
This rule cannot be annotated in the
source code.

2-10-1 Required Different identifiers shall be
typographically unambiguous.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-10-2 Required Identifiers declared in an inner
scope shall not hide an identifier
declared in an outer scope.

No detection for logical scopes: fields
or member functions hiding outer
scopes identifiers or hiding ancestors
members.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-10-3 Required A typedef name (including
qualification, if any) shall be a
unique identifier.

No detection across namespaces.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-10-4 Required A class, union or enum name
(including qualification, if any) shall
be a unique identifier.

No detection across namespaces.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-10-5 Advisory The identifier name of a non-
member object or function with
static storage duration should not be
reused.

For functions the detection is only
on the definition where there is a
declaration.

Bug Finder and Code Prover check
this coding rule differently. The

2-90

 MISRA C++ Coding Rules

N. Category MISRA Definition Polyspace Specification

analyses can produce different
results.

2-10-6 Required If an identifier refers to a type, it
shall not also refer to an object or a
function in the same scope.

If the identifier is a function and the
function is both declared and defined
then the violation is reported only
once.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-13-1 Required Only those escape sequences that
are defined in ISO/IEC 14882:2003
shall be used.

2-13-2 Required Octal constants (other than zero)
and octal escape sequences (other
than "\0") shall not be used.

2-13-3 Required A "U" suffix shall be applied to all
octal or hexadecimal integer literals
of unsigned type.

2-13-4 Required Literal suffixes shall be upper case.
2-13-5 Required Narrow and wide string literals

shall not be concatenated.

Basic Concepts

N. Category MISRA Definition Polyspace Specification

3-1-1 Required It shall be possible to include any
header file in multiple translation
units without violating the One
Definition Rule.

3-1-2 Required Functions shall not be declared at
block scope.

2-91

2 Coding Rule Sets and Concepts

N. Category MISRA Definition Polyspace Specification

3-1-3 Required When an array is declared, its size
shall either be stated explicitly or
defined implicitly by initialization.

3-2-1 Required All declarations of an object or
function shall have compatible
types.

3-2-2 Required The One Definition Rule shall not be
violated.

Report type, template, and inline
function defined in source file

3-2-3 Required A type, object or function that is
used in multiple translation units
shall be declared in one and only one
file.

3-2-4 Required An identifier with external linkage
shall have exactly one definition.

3-3-1 Required Objects or functions with external
linkage shall be declared in a header
file.

3-3-2 Required If a function has internal linkage
then all re-declarations shall include
the static storage class specifier.

3-4-1 Required An identifier declared to be an object
or type shall be defined in a block
that minimizes its visibility.

3-9-1 Required The types used for an object, a
function return type, or a function
parameter shall be token-for-token
identical in all declarations and re-
declarations.

Comparison is done between
current declaration and last seen
declaration.

3-9-2 Advisory typedefs that indicate size and
signedness should be used in place
of the basic numerical types.

No detection in non-instantiated
templates.

3-9-3 Required The underlying bit representations
of floating-point values shall not be
used.

2-92

 MISRA C++ Coding Rules

Standard Conversions

N. Category MISRA Definition Polyspace Specification

4-5-1 Required Expressions with type bool shall
not be used as operands to built-in
operators other than the assignment
operator =, the logical operators &&,
||, !, the equality operators == and !
=, the unary & operator, and the
conditional operator.

4-5-2 Required Expressions with type enum shall
not be used as operands to built- in
operators other than the subscript
operator [], the assignment operator
=, the equality operators == and !
=, the unary & operator, and the
relational operators <, <=, >, >=.

4-5-3 Required Expressions with type (plain) char
and wchar_t shall not be used as
operands to built-in operators other
than the assignment operator =, the
equality operators == and !=, and
the unary & operator. N

Expressions

N. Category MISRA Definition Polyspace Specification

5-0-1 Required The value of an expression shall
be the same under any order of
evaluation that the standard
permits.

5-0-2 Advisory Limited dependence should be
placed on C++ operator precedence
rules in expressions.

5-0-3 Required A cvalue expression shall not be
implicitly converted to a different
underlying type.

Assumes that ptrdiff_t is signed
integer

2-93

2 Coding Rule Sets and Concepts

N. Category MISRA Definition Polyspace Specification

5-0-4 Required An implicit integral conversion shall
not change the signedness of the
underlying type.

Assumes that ptrdiff_t is signed
integer

If the conversion is to a narrower
integer with a different sign then
MISRA C++ 5-0-4 takes precedence
over MISRA C++ 5-0-6.

5-0-5 Required There shall be no implicit floating-
integral conversions.

This rule takes precedence over
5-0-4 and 5-0-6 if they apply at the
same time.

5-0-6 Required An implicit integral or floating-point
conversion shall not reduce the size
of the underlying type.

If the conversion is to a narrower
integer with a different sign then
MISRA C++ 5-0-4 takes precedence
over MISRA C++ 5-0-6.

5-0-7 Required There shall be no explicit floating-
integral conversions of a cvalue
expression.

5-0-8 Required An explicit integral or floating-
point conversion shall not increase
the size of the underlying type of a
cvalue expression.

5-0-9 Required An explicit integral conversion
shall not change the signedness
of the underlying type of a cvalue
expression.

5-0-10 Required If the bitwise operators ~ and <<
are applied to an operand with an
underlying type of unsigned char or
unsigned short, the result shall be
immediately cast to the underlying
type of the operand.

5-0-11 Required The plain char type shall only be
used for the storage and use of
character values.

For numeric data, use a type which
has explicit signedness.

2-94

 MISRA C++ Coding Rules

N. Category MISRA Definition Polyspace Specification

5-0-12 Required Signed char and unsigned char type
shall only be used for the storage
and use of numeric values.

5-0-14 Required The first operand of a conditional-
operator shall have type bool.

5-0-15 Required Array indexing shall be the only
form of pointer arithmetic.

Warning on operations on pointers.
(p+I, I+p and p-I, where p is a
pointer and I an integer, p[i]
accepted).

5-0-18 Required >, >=, <, <= shall not be applied to
objects of pointer type, except where
they point to the same array.

Report when relational operator
are used on pointers types (casts
ignored).

5-0-19 Required The declaration of objects shall
contain no more than two levels of
pointer indirection.

5-0-20 Required Non-constant operands to a binary
bitwise operator shall have the same
underlying type.

5-0-21 Required Bitwise operators shall only be
applied to operands of unsigned
underlying type.

5-2-1 Required Each operand of a logical && or ||
shall be a postfix - expression.

During preprocessing, violations
of this rule are detected on the
expressions in #if directives. Allowed
exception on associativity (a && b
&& c), (a || b || c).

5-2-2 Required A pointer to a virtual base class
shall only be cast to a pointer
to a derived class by means of
dynamic_cast.

5-2-3 Advisory Casts from a base class to a derived
class should not be performed on
polymorphic types.

2-95

2 Coding Rule Sets and Concepts

N. Category MISRA Definition Polyspace Specification

5-2-4 Required C-style casts (other than void casts)
and functional notation casts (other
than explicit constructor calls) shall
not be used.

5-2-5 Required A cast shall not remove any const or
volatile qualification from the type
of a pointer or reference.

5-2-6 Required A cast shall not convert a pointer to
a function to any other pointer type,
including a pointer to function type.

No violation if pointer types of
operand and target are identical.

5-2-7 Required An object with pointer type shall not
be converted to an unrelated pointer
type, either directly or indirectly.

"Extended to all pointer conversions
including between pointer to struct
object and pointer to type of the first
member of the struct type. Indirect
conversions through non-pointer
type (e.g. int) are not detected."

5-2-8 Required An object with integer type or
pointer to void type shall not be
converted to an object with pointer
type.

Exception on zero constants. Objects
with pointer type include objects
with pointer to function type.

5-2-9 Advisory A cast should not convert a pointer
type to an integral type.

5-2-10 Advisory The increment (++) and decrement
(--) operators should not be
mixed with other operators in an
expression.

5-2-11 Required The comma operator, && operator
and the || operator shall not be
overloaded.

5-2-12 Required An identifier with array type passed
as a function argument shall not
decay to a pointer.

5-3-1 Required Each operand of the ! operator,
the logical && or the logical ||
operators shall have type bool.

2-96

 MISRA C++ Coding Rules

N. Category MISRA Definition Polyspace Specification

5-3-2 Required The unary minus operator shall not
be applied to an expression whose
underlying type is unsigned.

5-3-3 Required The unary & operator shall not be
overloaded.

5-3-4 Required Evaluation of the operand to the
sizeof operator shall not contain side
effects.

No warning on volatile accesses and
function calls

5-8-1 Required The right hand operand of a shift
operator shall lie between zero and
one less than the width in bits of
the underlying type of the left hand
operand.

5-14-1 Required The right hand operand of a logical
&& or || operator shall not contain
side effects.

No warning on volatile accesses and
function calls.

5-18-1 Required The comma operator shall not be
used.

5-19-1 Required Evaluation of constant unsigned
integer expressions should not lead
to wrap-around.

Statements

N. Category MISRA Definition Polyspace Specification

6-2-1 Required Assignment operators shall not be
used in sub-expressions.

6-2-2 Required Floating-point expressions shall not
be directly or indirectly tested for
equality or inequality.

6-2-3 Required Before preprocessing, a null
statement shall only occur on a
line by itself; it may be followed
by a comment, provided that
the first character following the

2-97

2 Coding Rule Sets and Concepts

N. Category MISRA Definition Polyspace Specification

null statement is a white - space
character.

6-3-1 Required The statement forming the body
of a switch, while, do ... while or
for statement shall be a compound
statement.

6-4-1 Required An if (condition) construct shall be
followed by a compound statement.
The else keyword shall be followed
by either a compound statement, or
another if statement.

6-4-2 Required All if ... else if constructs shall be
terminated with an else clause.

Also detects cases where the last
if is in the block of the last else
(same behavior as JSF, stricter than
MISRA C).

Example: "if … else { if …{}}"
raises the rule

6-4-3 Required A switch statement shall be a well-
formed switch statement.

Return statements are considered as
jump statements.

6-4-4 Required A switch-label shall only be used
when the most closely-enclosing
compound statement is the body of a
switch statement.

6-4-5 Required An unconditional throw or break
statement shall terminate every non
- empty switch-clause.

6-4-6 Required The final clause of a switch
statement shall be the default-
clause.

6-4-7 Required The condition of a switch statement
shall not have bool type.

6-4-8 Required Every switch statement shall have
at least one case-clause.

2-98

 MISRA C++ Coding Rules

N. Category MISRA Definition Polyspace Specification

6-5-1 Required A for loop shall contain a single
loop-counter which shall not have
floating type.

6-5-2 Required If loop-counter is not modified by --
or ++, then, within condition, the
loop-counter shall only be used as an
operand to <=, <, > or >=.

6-5-3 Required The loop-counter shall not be
modified within condition or
statement.

Detect only direct assignments if
for_index is known (see 6-5-1).

6-5-4 Required The loop-counter shall be modified
by one of: --, ++, -=n, or +=n ; where
n remains constant for the duration
of the loop.

6-5-5 Required A loop-control-variable other
than the loop-counter shall not
be modified within condition or
expression.

6-5-6 Required A loop-control-variable other than
the loop-counter which is modified in
statement shall have type bool.

6-6-1 Required Any label referenced by a goto
statement shall be declared in the
same block, or in a block enclosing
the goto statement.

6-6-2 Required The goto statement shall jump to
a label declared later in the same
function body.

6-6-3 Required The continue statement shall only be
used within a well-formed for loop.

Assumes 6.5.1 to 6.5.6: so it is
implemented only for supported
6_5_x rules.

6-6-4 Required For any iteration statement there
shall be no more than one break
or goto statement used for loop
termination.

2-99

2 Coding Rule Sets and Concepts

N. Category MISRA Definition Polyspace Specification

6-6-5 Required A function shall have a single point
of exit at the end of the function.

At most one return not necessarily
as last statement for void functions.

Declarations

N. Category MISRA Definition Polyspace Specification

7-3-1 Required The global namespace shall
only contain main, namespace
declarations and extern "C"
declarations.

7-3-2 Required The identifier main shall not be used
for a function other than the global
function main.

7-3-3 Required There shall be no unnamed
namespaces in header files.

7-3-4 Required using-directives shall not be used.
7-3-5 Required Multiple declarations for an

identifier in the same namespace
shall not straddle a using-
declaration for that identifier.

7-3-6 Required using-directives and using-
declarations (excluding class scope
or function scope using-declarations)
shall not be used in header files.

7-4-2 Required Assembler instructions shall
only be introduced using the asm
declaration.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

7-4-3 Required Assembly language shall be
encapsulated and isolated.

7-5-1 Required A function shall not return a
reference or a pointer to an
automatic variable (including
parameters), defined within the
function.

2-100

 MISRA C++ Coding Rules

N. Category MISRA Definition Polyspace Specification

7-5-2 Required The address of an object with
automatic storage shall not be
assigned to another object that may
persist after the first object has
ceased to exist.

7-5-3 Required A function shall not return a
reference or a pointer to a parameter
that is passed by reference or const
reference.

7-5-4 Advisory Functions should not call
themselves, either directly or
indirectly.

Declarators

N. Category MISRA Definition Polyspace Specification

8-0-1 Required An init-declarator-list or a member-
declarator-list shall consist of a
single init-declarator or member-
declarator respectively.

8-3-1 Required Parameters in an overriding virtual
function shall either use the same
default arguments as the function
they override, or else shall not
specify any default arguments.

8-4-1 Required Functions shall not be defined using
the ellipsis notation.

8-4-2 Required The identifiers used for the
parameters in a re-declaration of a
function shall be identical to those in
the declaration.

8-4-3 Required All exit paths from a function with
non- void return type shall have an
explicit return statement with an
expression.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

2-101

2 Coding Rule Sets and Concepts

N. Category MISRA Definition Polyspace Specification

8-4-4 Required A function identifier shall either be
used to call the function or it shall
be preceded by &.

8-5-1 Required All variables shall have a defined
value before they are used.

Non-initialized variable in results
and error messages for obvious cases

8-5-2 Required Braces shall be used to indicate
and match the structure in the non-
zero initialization of arrays and
structures.

8-5-3 Required In an enumerator list, the =
construct shall not be used to
explicitly initialize members other
than the first, unless all items are
explicitly initialized.

Classes

N. Category MISRA Definition Polyspace Specification

9-3-1 Required const member functions shall
not return non-const pointers or
references to class-data.

Class-data for a class is restricted to
all non-static member data.

9-3-2 Required Member functions shall not return
non-const handles to class-data.

Class-data for a class is restricted to
all non-static member data.

9-5-1 Required Unions shall not be used.
9-6-2 Required Bit-fields shall be either bool type

or an explicitly unsigned or signed
integral type.

9-6-3 Required Bit-fields shall not have enum type.
9-6-4 Required Named bit-fields with signed integer

type shall have a length of more
than one bit.

2-102

 MISRA C++ Coding Rules

Derived Classes

N. Category MISRA Definition Polyspace Specification

10-1-1 Advisory Classes should not be derived from
virtual bases.

10-1-2 Required A base class shall only be declared
virtual if it is used in a diamond
hierarchy.

Assumes 10.1.1 not required

10-1-3 Required An accessible base class shall not be
both virtual and nonvirtual in the
same hierarchy.

10-2-1 Required All accessible entity names within
a multiple inheritance hierarchy
should be unique.

No detection between entities of
different kinds (member functions
against data members, …).

10-3-1 Required There shall be no more than one
definition of each virtual function on
each path through the inheritance
hierarchy.

Member functions that are virtual
by inheritance are also detected.

10-3-2 Required Each overriding virtual function
shall be declared with the virtual
keyword.

10-3-3 Required A virtual function shall only be
overridden by a pure virtual
function if it is itself declared as
pure virtual.

Member Access Control

N. Category MISRA Definition Polyspace Specification

11-0-1 Required Member data in non- POD class
types shall be private.

Special Member Functions

N. Category MISRA Definition Polyspace Specification

12-1-1 Required An object's dynamic type shall not be
used from the body of its constructor
or destructor.

2-103

2 Coding Rule Sets and Concepts

N. Category MISRA Definition Polyspace Specification

12-1-2 Advisory All constructors of a class should
explicitly call a constructor for all of
its immediate base classes and all
virtual base classes.

12-1-3 Required All constructors that are callable
with a single argument of
fundamental type shall be declared
explicit.

12-8-1 Required A copy constructor shall only
initialize its base classes and the
non- static members of the class of
which it is a member.

12-8-2 Required The copy assignment operator shall
be declared protected or private in
an abstract class.

Templates

N. Category MISRA Definition Polyspace Specification

14-5-2 Required A copy constructor shall be declared
when there is a template constructor
with a single parameter that is a
generic parameter.

14-5-3 Required A copy assignment operator
shall be declared when there is
a template assignment operator
with a parameter that is a generic
parameter.

14-6-1 Required In a class template with a dependent
base, any name that may be found
in that dependent base shall be
referred to using a qualified-id or
this->

14-6-2 Required The function chosen by overload
resolution shall resolve to a

2-104

 MISRA C++ Coding Rules

N. Category MISRA Definition Polyspace Specification

function declared previously in the
translation unit.

14-7-3 Required All partial and explicit
specializations for a template shall
be declared in the same file as
the declaration of their primary
template.

14-8-1 Required Overloaded function templates shall
not be explicitly specialized.

All specializations of overloaded
templates are rejected even if
overloading occurs after the call.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

14-8-2 Advisory The viable function set for a function
call should either contain no
function specializations, or only
contain function specializations.

Exception Handling

N. Category MISRA Definition Polyspace Specification

15-0-2 Advisory An exception object should not have
pointer type.

NULL not detected (see 15-1-2).

15-0-3 Required Control shall not be transferred into
a try or catch block using a goto or a
switch statement.

15-1-2 Required NULL shall not be thrown explicitly.
15-1-3 Required An empty throw (throw;) shall only

be used in the compound- statement
of a catch handler.

15-3-2 Advisory There should be at least one
exception handler to catch all
otherwise unhandled exceptions.

Detect that there is no try/catch in
the main and that the catch does not
handle all exceptions. Not detected if
no "main".

2-105

2 Coding Rule Sets and Concepts

N. Category MISRA Definition Polyspace Specification

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

15-3-3 Required Handlers of a function-try-
block implementation of a class
constructor or destructor shall not
reference non-static members from
this class or its bases.

15-3-5 Required A class type exception shall always
be caught by reference.

15-3-6 Required Where multiple handlers are
provided in a single try-catch
statement or function-try-block for
a derived class and some or all of its
bases, the handlers shall be ordered
most-derived to base class.

15-3-7 Required Where multiple handlers are
provided in a single try-catch
statement or function-try-block,
any ellipsis (catch-all) handler shall
occur last.

15-4-1 Required If a function is declared with an
exception-specification, then all
declarations of the same function
(in other translation units) shall be
declared with the same set of type-
ids.

15-5-1 Required A class destructor shall not exit with
an exception.

Limit detection to throw and catch
that are internals to the destructor;
rethrows are partially processed; no
detections in nested handlers.

2-106

 MISRA C++ Coding Rules

N. Category MISRA Definition Polyspace Specification

15-5-2 Required Where a function's declaration
includes an exception-specification,
the function shall only be capable of
throwing exceptions of the indicated
type(s).

Limit detection to throw that
are internals to the function;
rethrows are partially processed; no
detections in nested handlers.

Preprocessing Directives

N. Category MISRA Definition Polyspace Specification

16-0-1 Required #include directives in a file
shall only be preceded by other
preprocessor directives or comments.

16-0-2 Required Macros shall only be #define 'd or
#undef 'd in the global namespace.

16-0-3 Required #undef shall not be used.
16-0-4 Required Function-like macros shall not be

defined.

16-0-5 Required Arguments to a function-like macro
shall not contain tokens that look
like preprocessing directives.

16-0-6 Required In the definition of a function-like
macro, each instance of a parameter
shall be enclosed in parentheses,
unless it is used as the operand of #
or ##.

16-0-7 Required Undefined macro identifiers
shall not be used in #if or #elif
preprocessor directives, except as
operands to the defined operator.

16-0-8 Required If the # token appears as the
first token on a line, then it shall
be immediately followed by a
preprocessing token.

2-107

2 Coding Rule Sets and Concepts

N. Category MISRA Definition Polyspace Specification

16-1-1 Required The defined preprocessor operator
shall only be used in one of the two
standard forms.

16-1-2 Required All #else, #elif and #endif
preprocessor directives shall reside
in the same file as the #if or #ifdef
directive to which they are related.

16-2-1 Required The preprocessor shall only be used
for file inclusion and include guards.

The rule is raised for #ifdef/#define
if the file is not an include file.

16-2-2 Required C++ macros shall only be used for:
include guards, type qualifiers, or
storage class specifiers.

16-2-3 Required Include guards shall be provided.
16-2-4 Required The ', ", /* or // characters shall not

occur in a header file name.

16-2-5 Advisory The \ character should not occur in
a header file name.

16-2-6 Required The #include directive shall be
followed by either a <filename> or
"filename" sequence.

16-3-1 Required There shall be at most one
occurrence of the # or ## operators
in a single macro definition.

16-3-2 Advisory The # and ## operators should not
be used.

16-6-1 Document All uses of the #pragma directive
shall be documented.

To check this rule, you must list the
pragmas that are allowed in source
files by using the option Allowed
pragmas (-allowed-pragmas). If
Polyspace finds a pragma not in the
allowed pragma list, a violation is
raised.

2-108

 MISRA C++ Coding Rules

Library Introduction

N. Category MISRA Definition Polyspace Specification

17-0-1 Required Reserved identifiers, macros and
functions in the standard library
shall not be defined, redefined or
undefined.

Bug Finder and Code Prover check
this coding rule differently. The
analyses can produce different
results.

17-0-2 Required The names of standard library
macros and objects shall not be
reused.

17-0-5 Required The setjmp macro and the longjmp
function shall not be used.

Language Support Library

N. Category MISRA Definition Polyspace Specification

18-0-1 Required The C library shall not be used.
18-0-2 Required The library functions atof, atoi and

atol from library <cstdlib> shall not
be used.

18-0-3 Required The library functions abort, exit,
getenv and system from library
<cstdlib> shall not be used.

The option -compiler iso must
be used to detect violations, for
example, exit.

18-0-4 Required The time handling functions of
library <ctime> shall not be used.

18-0-5 Required The unbounded functions of library
<cstring> shall not be used.

18-2-1 Required The macro offsetof shall not be used.
18-4-1 Required Dynamic heap memory allocation

shall not be used.

18-7-1 Required The signal handling facilities of
<csignal> shall not be used.

2-109

2 Coding Rule Sets and Concepts

Diagnostic Library

N. Category MISRA Definition Polyspace Specification

19-3-1 Required The error indicator errno shall not
be used.

Input/output Library

N. Category MISRA Definition Polyspace Specification

27-0-1 Required The stream input/output library
<cstdio> shall not be used.

Unsupported MISRA C++ Rules

• “Language Independent Issues” on page 2-110
• “General” on page 2-111
• “Lexical Conventions” on page 2-112
• “Standard Conversions” on page 2-112
• “Expressions” on page 2-112
• “Declarations” on page 2-113
• “Classes” on page 2-113
• “Templates” on page 2-114
• “Exception Handling” on page 2-114
• “Library Introduction” on page 2-115

Language Independent Issues

N. Category MISRA Definition Polyspace Specification

0–1–3 Required A project shall not contain unused
variables.

0-1-4 Required A project shall not contain non-
volatile POD variables having only
one use.

2-110

 MISRA C++ Coding Rules

N. Category MISRA Definition Polyspace Specification

0-1-5 Required A project shall not contain unused
type declarations.

0-1-6 Required A project shall not contain instances
of non-volatile variables being given
values that are never subsequently
used.

0-1-8 Required All functions with void return type
shall have external side effects.

0-3-1 Required Minimization of run-time failures
shall be ensured by the use of at
least one of: (a) static analysis tools/
techniques; (b) dynamic analysis
tools/techniques; (c) explicit coding
of checks to handle run-time faults.

0-3-2 Required If a function generates error
information, then that error
information shall be tested.

0-4-1 Document Use of scaled-integer or fixed-point
arithmetic shall be documented.

To observe this rule, check your
compiler documentation.

0-4-2 Document Use of floating-point arithmetic shall
be documented.

To observe this rule, check your
compiler documentation.

0-4-3 Document Floating-point implementations
shall comply with a defined floating-
point standard.

To observe this rule, check your
compiler documentation.

General

N. Category MISRA Definition Polyspace Specification

1-0-2 Document Multiple compilers shall only be
used if they have a common, defined
interface.

To observe this rule, check your
compiler documentation.

1-0-3 Document The implementation of integer
division in the chosen compiler shall
be determined and documented.

To observe this rule, check your
compiler documentation.

2-111

2 Coding Rule Sets and Concepts

Lexical Conventions

N. Category MISRA Definition Polyspace Specification

2-2-1 Document The character set and the
corresponding encoding shall be
documented.

To observe this rule, check your
compiler documentation.

2-7-2 Required Sections of code shall not be
"commented out" using C-style
comments.

One way a tool can check this rule
is to determine if the code compiles
when commented out sections are
uncommented. However, such
checking can be expensive and
inaccurate.

2-7-3 Advisory Sections of code should not be
"commented out" using C++
comments.

One way a tool can check this rule
is to determine if the code compiles
when commented out sections are
uncommented. However, such
checking can be expensive and
inaccurate.

Standard Conversions

N. Category MISRA Definition Polyspace Specification

4-10-1 Required ULL shall not be used as an integer
value.

4-10-2 Required Literal zero (0) shall not be used as
the null-pointer-constant.

Expressions

N. Category MISRA Definition Polyspace Specification

5-0-13 Required The condition of an if-statement
and the condition of an iteration-
statement shall have type bool.

5-0-16 Required A pointer operand and any pointer
resulting from pointer arithmetic
using that operand shall both
address elements of the same array.

2-112

 MISRA C++ Coding Rules

N. Category MISRA Definition Polyspace Specification

5-0-17 Required Subtraction between pointers shall
only be applied to pointers that
address elements of the same array.

5-17-1 Required The semantic equivalence between a
binary operator and its assignment
operator form shall be preserved.

Declarations

N. MISRA Definition Polyspace Specification

7-1-1 Required A variable which is not modified
shall be const qualified.

7-1-2 Required A pointer or reference parameter
in a function shall be declared as
pointer to const or reference to const
if the corresponding object is not
modified.

7-2-1 Required An expression with enum underlying
type shall only have values
corresponding to the enumerators of
the enumeration.

7-4-1 Document All usage of assembler shall be
documented.

To observe this rule, check your
compiler documentation.

Classes

N. Category MISRA Definition Polyspace Specification

9-3-3 Required If a member function can be made
static then it shall be made static,
otherwise if it can be made const
then it shall be made const.

9-6-1 Document When the absolute positioning
of bits representing a bit-field
is required, then the behavior

To observe this rule, check your
compiler documentation.

2-113

2 Coding Rule Sets and Concepts

N. Category MISRA Definition Polyspace Specification

and packing of bit-fields shall be
documented.

Templates

N. MISRA Definition Polyspace Specification

14-5-1 Required A non-member generic function shall
only be declared in a namespace that
is not an associated namespace.

14-7-1 Required All class templates, function
templates, class template member
functions and class template static
members shall be instantiated at
least once.

14-7-2 Required For any given template
specialization, an explicit
instantiation of the template with
the template-arguments used in the
specialization shall not render the
program ill-formed.

Exception Handling

N. Category MISRA Definition Polyspace Specification

15-0-1 Document Exceptions shall only be used for
error handling.

To observe this rule, check your
compiler documentation.

15-1-1 Required The assignment-expression of a
throw statement shall not itself
cause an exception to be thrown.

15-3-1 Required Exceptions shall be raised only after
start-up and before termination of
the program.

15-3-4 Required Each exception explicitly thrown in
the code shall have a handler of a
compatible type in all call paths that
could lead to that point.

2-114

 MISRA C++ Coding Rules

N. Category MISRA Definition Polyspace Specification

15-5-3 Required The terminate() function shall not be
called implicitly.

Library Introduction

N. Category MISRA Definition Polyspace Specification

17-0-3 Required The names of standard library
functions shall not be overridden.

17-0-4 Required All library code shall conform to
MISRA C++.

To observe this rule, check your
compiler documentation.

2-115

2 Coding Rule Sets and Concepts

Polyspace JSF C++ Checker

The Polyspace JSF C++ checker helps you comply with the Joint Strike Fighter® Air
Vehicle C++ coding standards (JSF++). These coding standards were developed by
Lockheed Martin® for the Joint Strike Fighter program. They are designed to improve
the robustness of C++ code, and improve maintainability.

5

When JSF++ rules are violated, the Polyspace JSF C++ checker enables Polyspace
software to provide messages with information about the rule violations. Most messages
are reported during the compile phase of an analysis.

Note: The Polyspace JSF C++ checker is based on JSF++:2005.

5. JSF and Joint Strike Fighter are registered trademarks of Lockheed Martin.

2-116

 JSF C++ Coding Rules

JSF C++ Coding Rules

In this section...

“Supported JSF C++ Coding Rules” on page 2-117
“Unsupported JSF++ Rules” on page 2-140

Supported JSF C++ Coding Rules

• “Code Size and Complexity” on page 2-118
• “Environment” on page 2-118
• “Libraries” on page 2-119
• “Pre-Processing Directives” on page 2-119
• “Header Files” on page 2-121
• “Style” on page 2-121
• “Classes” on page 2-125
• “Namespaces” on page 2-129
• “Templates” on page 2-129
• “Functions” on page 2-129
• “Comments” on page 2-130
• “Declarations and Definitions” on page 2-130
• “Initialization” on page 2-131
• “Types” on page 2-132
• “Constants” on page 2-132
• “Variables” on page 2-132
• “Unions and Bit Fields” on page 2-133
• “Operators” on page 2-133
• “Pointers and References” on page 2-134
• “Type Conversions” on page 2-135
• “Flow Control Standards” on page 2-136
• “Expressions” on page 2-138
• “Memory Allocation” on page 2-139

2-117

2 Coding Rule Sets and Concepts

• “Fault Handling” on page 2-139
• “Portable Code” on page 2-139

Code Size and Complexity

N. JSF++ Definition Polyspace Specification

1 Any one function (or method) will contain no
more than 200 logical source lines of code (L-
SLOCs).

Message in report file:

<function name> has <num> logical source
lines of code.

3 All functions shall have a cyclomatic
complexity number of 20 or less.

Message in report file:

<function name> has cyclomatic
complexity number equal to <num>.

Environment

N. JSF++ Definition Polyspace Specification

8 All code shall conform to ISO/IEC
14882:2002(E) standard C++.

Reports the compilation error message

9 Only those characters specified in the C++
basic source character set will be used.

11 Trigraphs will not be used.
12 The following digraphs will not be used: <%,

%>, <:, :>, %:, %:%:.
Message in report file:

The following digraph will not be used:
<digraph>.

Reports the digraph. If the rule level is set to
warning, the digraph will be allowed even if
it is not supported in -compiler iso.

13 Multi-byte characters and wide string
literals will not be used.

Report L'c', L"string", and use of
wchar_t.

14 Literal suffixes shall use uppercase rather
than lowercase letters.

15 Provision shall be made for run-time
checking (defensive programming).

Done with checks in the software.

2-118

 JSF C++ Coding Rules

Libraries

N. JSF++ Definition Polyspace Specification

17 The error indicator errno shall not be
used.

errno should not be used as a macro or a
global with external "C" linkage.

18 The macro offsetof, in library
<stddef.h>, shall not be used.

offsetof should not be used as a macro or
a global with external "C" linkage.

19 <locale.h> and the setlocale function
shall not be used.

setlocale and localeconv should not be
used as a macro or a global with external "C"
linkage.

20 The setjmp macro and the longjmp
function shall not be used.

setjmp and longjmp should not be used
as a macro or a global with external "C"
linkage.

21 The signal handling facilities of
<signal.h> shall not be used.

signal and raise should not be used as a
macro or a global with external "C" linkage.

22 The input/output library <stdio.h> shall
not be used.

all standard functions of <stdio.h> should
not be used as a macro or a global with
external "C" linkage.

23 The library functions atof, atoi and atol
from library <stdlib.h> shall not be used.

atof, atoi and atol should not be used
as a macro or a global with external "C"
linkage.

24 The library functions abort, exit, getenv
and system from library <stdlib.h> shall
not be used.

abort, exit, getenv and system should
not be used as a macro or a global with
external "C" linkage.

25 The time handling functions of library
<time.h> shall not be used.

clock, difftime, mktime, asctime,
ctime, gmtime, localtime and strftime
should not be used as a macro or a global
with external "C" linkage.

Pre-Processing Directives

N. JSF++ Definition Polyspace Specification

26 Only the following preprocessor directives
shall be used: #ifndef, #define, #endif,
#include.

2-119

2 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Specification

27 #ifndef, #define and #endif will be
used to prevent multiple inclusions of
the same header file. Other techniques to
prevent the multiple inclusions of header
files will not be used.

Detects the patterns #if !defined,
#pragma once, #ifdef, and missing
#define.

28 The #ifndef and #endif preprocessor
directives will only be used as defined in AV
Rule 27 to prevent multiple inclusions of the
same header file.

Detects any use that does not comply with
AV Rule 27. Assuming 35/27 is not violated,
reports only #ifndef.

29 The #define preprocessor directive shall
not be used to create inline macros. Inline
functions shall be used instead.

Rule is split into two parts: the definition of
a macro function (29.def) and the call of a
macrofunction (29.use).

Messages in report file:

• 29.1 : The #define preprocessor
directive shall not be used to create inline
macros.

• 29.2 : Inline functions shall be used
instead of inline macros.

30 The #define preprocessor directive shall
not be used to define constant values.
Instead, the const qualifier shall be
applied to variable declarations to specify
constant values.

Reports #define of simple constants.

31 The #define preprocessor directive will
only be used as part of the technique to
prevent multiple inclusions of the same
header file.

Detects use of #define that are not used to
guard for multiple inclusion, assuming that
rules 35 and 27 are not violated.

32 The #include preprocessor directive will
only be used to include header (*.h) files.

2-120

 JSF C++ Coding Rules

Header Files

N. JSF++ Definition Polyspace Specification

33 The #include directive shall use the
<filename.h> notation to include header
files.

35 A header file will contain a mechanism that
prevents multiple inclusions of itself.

39 Header files (*.h) will not contain non-
const variable definitions or function
definitions.

Reports definitions of global variables /
function in header.

Style

N. JSF++ Definition Polyspace Specification

40 Every implementation file shall include the
header files that uniquely define the inline
functions, types, and templates used.

Reports when type, template, or inline
function is defined in source file.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

41 Source lines will be kept to a length of 120
characters or less.

42 Each expression-statement will be on a
separate line.

Reports when two consecutive expression
statements are on the same line.

43 Tabs should be avoided.
44 All indentations will be at least two spaces

and be consistent within the same source
file.

Reports when a statement indentation
is not at least two spaces more than the
statement containing it. Does not report
bad indentation between opening braces
following if/else, do/while, for, and while
statements. NB: in final release it will
accept any indentation

46 User-specified identifiers (internal and
external) will not rely on significance of
more than 64 characters.

2-121

2 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Specification

47 Identifiers will not begin with the
underscore character '_'.

48 Identifiers will not differ by:

• Only a mixture of case
• The presence/absence of the underscore

character
• The interchange of the letter 'O'; with the

number '0' or the letter 'D'
• The interchange of the letter 'I'; with the

number '1' or the letter 'l'
• The interchange of the letter 'S' with the

number '5'
• The interchange of the letter 'Z' with the

number 2
• The interchange of the letter 'n' with the

letter 'h'

Checked regardless of scope. Not checked
between macros and other identifiers.

Messages in report file:

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp
line l2 column c2) only differ by
the presence/absence of the underscore
character.

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp
line l2 column c2) only differ by a
mixture of case.

• Identifier Idf1 (file1.cpp line l1
column c1) and Idf2 (file2.cpp
line l2 column c2) only differ by
letter O, with the number 0.

50 The first word of the name of a class,
structure, namespace, enumeration, or type
created with typedef will begin with an
uppercase letter. All others letters will be
lowercase.

Messages in report file:

• The first word of the name of a class will
begin with an uppercase letter.

• The first word of the namespace of a class
will begin with an uppercase letter.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

2-122

 JSF C++ Coding Rules

N. JSF++ Definition Polyspace Specification

51 All letters contained in function and
variables names will be composed entirely
of lowercase letters.

Messages in report file:

• All letters contained in variable names
will be composed entirely of lowercase
letters.

• All letters contained in function names
will be composed entirely of lowercase
letters.

52 Identifiers for constant and enumerator
values shall be lowercase.

Messages in report file:

• Identifier for enumerator value shall be
lowercase.

• Identifier for template constant
parameter shall be lowercase.

53 Header files will always have file name
extension of ".h".

.H is allowed if you set the option -dos.

53.1 The following character sequences shall not
appear in header file names: ', \, /*, //, or
".

54 Implementation files will always have a file
name extension of ".cpp".

Not case sensitive if you set the option -dos.

57 The public, protected, and private sections of
a class will be declared in that order.

58 When declaring and defining functions with
more than two parameters, the leading
parenthesis and the first argument will
be written on the same line as the function
name. Each additional argument will
be written on a separate line (with the
closing parenthesis directly after the last
argument).

Detects that two parameters are not on the
same line, The first parameter should be on
the same line as function name. Does not
check for the closing parenthesis.

2-123

2 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Specification

59 The statements forming the body of an
if, else if, else, while, do ... while or for
statement shall always be enclosed in
braces, even if the braces form an empty
block.

Messages in report file:

• The statements forming the body of an
if statement shall always be enclosed in
braces.

• The statements forming the body of an
else statement shall always be enclosed
in braces.

• The statements forming the body of a
while statement shall always be enclosed
in braces.

• The statements forming the body of a
do ... while statement shall always be
enclosed in braces.

• The statements forming the body of a for
statement shall always be enclosed in
braces.

60 Braces ("{}") which enclose a block will be
placed in the same column, on separate lines
directly before and after the block.

Detects that statement-block braces should
be in the same columns.

61 Braces ("{}") which enclose a block will
have nothing else on the line except
comments.

62 The dereference operator ‘*’ and the address-
of operator ‘&’ will be directly connected
with the type-specifier.

Reports when there is a space between type
and "*" "&" for variables, parameters and
fields declaration.

2-124

 JSF C++ Coding Rules

N. JSF++ Definition Polyspace Specification

63 Spaces will not be used around ‘.’ or ‘->’, nor
between unary operators and operands.

Reports when the following characters are
not directly connected to a white space:

• .
• ->
• !
• ~
• -
• ++
• —

Note: A violation will be reported for “.” used
in float/double definition.

Classes

N. JSF++ Definition Polyspace Specification

67 Public and protected data should only be
used in structs - not classes.

68 Unneeded implicitly generated member
functions shall be explicitly disallowed.

Reports when default constructor,
assignment operator, copy constructor or
destructor is not declared.

71.1 A class’s virtual functions shall not be
invoked from its destructor or any of its
constructors.

Reports when a constructor or destructor
directly calls a virtual function.

74 Initialization of nonstatic class members
will be performed through the member
initialization list rather than through
assignment in the body of a constructor.

All data should be initialized in the
initialization list except for array. Does not
report that an assignment exists in ctor
body.

Message in report file:

Initialization of nonstatic class members
"<field>" will be performed through the
member initialization list.

2-125

2 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Specification

75 Members of the initialization list shall be
listed in the order in which they are declared
in the class.

76 A copy constructor and an assignment
operator shall be declared for classes that
contain pointers to data items or nontrivial
destructors.

Messages in report file:

• no copy constructor and no copy

assign

• no copy constructor

• no copy assign

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

77.1 The definition of a member function
shall not contain default arguments that
produce a signature identical to that of the
implicitly-declared copy constructor for the
corresponding class/structure.

Does not report when an explicit copy
constructor exists.

78 All base classes with a virtual function shall
define a virtual destructor.

79 All resources acquired by a class shall be
released by the class’s destructor.

Reports when the number of “new” called in
a constructor is greater than the number of
“delete” called in its destructor.

Note: A violation is raised even if “new” is
done in a “if/else”.

2-126

 JSF C++ Coding Rules

N. JSF++ Definition Polyspace Specification

81 The assignment operator shall handle self-
assignment correctly

Reports when copy assignment body does
not begin with “if (this != arg)”

A violation is not raised if an empty else
statement follows the if, or the body
contains only a return statement.

A violation is raised when the if statement
is followed by a statement other than the
return statement.

82 An assignment operator shall return a
reference to *this.

The following operators should return
*this on method, and *first_arg on plain
function.

operator=operator+=operator-

=operator*=operator >>=operator

<<=operator /=operator %=operator

|=operator &=operator ^=prefix

operator++ prefix operator--

Does not report when no return exists.

No special message if type does not match.

Messages in report file:

• An assignment operator shall return a
reference to *this.

• An assignment operator shall return a
reference to its first arg.

83 An assignment operator shall assign all data
members and bases that affect the class
invariant (a data element representing a
cache, for example, would not need to be
copied).

Reports when a copy assignment does not
assign all data members. In a derived class,
it also reports when a copy assignment does
not call inherited copy assignments.

2-127

2 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Specification

88 Multiple inheritance shall only be allowed
in the following restricted form: n interfaces
plus m private implementations, plus at most
one protected implementation.

Messages in report file:

• Multiple inheritance on public
implementation shall not be allowed:
<public_base_class> is not an
interface.

• Multiple inheritance on protected
implementation shall not be allowed :
<protected_base_class_1>.

• <protected_base_class_2> are not
interfaces.

88.1 A stateful virtual base shall be explicitly
declared in each derived class that accesses
it.

89 A base class shall not be both virtual and
nonvirtual in the same hierarchy.

94 An inherited nonvirtual function shall not
be redefined in a derived class.

Does not report for destructor.

Message in report file:

Inherited nonvirtual function %s shall not be
redefined in a derived class.

95 An inherited default parameter shall never
be redefined.

96 Arrays shall not be treated
polymorphically.

Reports pointer arithmetic and array like
access on expressions whose pointed type is
used as a base class.

97 Arrays shall not be used in interface. Only to prevent array-to-pointer-decay. Not
checked on private methods

97.1 Neither operand of an equality operator (==
or !=) shall be a pointer to a virtual member
function.

Reports == and != on pointer to member
function of polymorphic classes (cannot
determine statically if it is virtual or not),
except when one argument is the null
constant.

2-128

 JSF C++ Coding Rules

Namespaces

N. JSF++ Definition Polyspace Specification

98 Every nonlocal name, except main(),
should be placed in some namespace.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

99 Namespaces will not be nested more than
two levels deep.

Templates

N. JSF++ Definition Polyspace Specification

104 A template specialization shall be declared
before its use.

Reports the actual compilation error
message.

Functions

N. JSF++ Definition Polyspace Specification

107 Functions shall always be declared at file
scope.

108 Functions with variable numbers of
arguments shall not be used.

109 A function definition should not be placed in
a class specification unless the function is
intended to be inlined.

Reports when "inline" is not in the definition
of a member function inside the class
definition.

110 Functions with more than 7 arguments will
not be used.

111 A function shall not return a pointer or
reference to a non-static local object.

Simple cases without alias effect detected.

113 Functions will have a single exit point. Reports first return, or once per function.
114 All exit points of value-returning functions

shall be through return statements.

116 Small, concrete-type arguments (two or
three words in size) should be passed by
value if changes made to formal parameters
should not be reflected in the calling
function.

Report constant parameters references with
sizeof <= 2 * sizeof(int). Does not
report for copy-constructor.

2-129

2 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Specification

119 Functions shall not call themselves, either
directly or indirectly (i.e. recursion shall not
be allowed).

Direct recursion is reported statically.
Indirect recursion reported through the
software.

Message in report file:

Function <F> shall not call directly itself.
121 Only functions with 1 or 2 statements

should be considered candidates for inline
functions.

Reports inline functions with more than 2
statements.

Comments

N. JSF++ Definition Polyspace Specification

126 Only valid C++ style comments (//) shall be
used.

133 Every source file will be documented with
an introductory comment that provides
information on the file name, its contents,
and any program-required information (e.g.
legal statements, copyright information, etc).

Reports when a file does not begin with two
comment lines.

Note: This rule cannot be annotated in the
source code.

Declarations and Definitions

N. JSF++ Definition Polyspace Specification

135 Identifiers in an inner scope shall not use
the same name as an identifier in an outer
scope, and therefore hide that identifier.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

136 Declarations should be at the smallest
feasible scope.

Reports when:

• A global variable is used in only one
function.

• A local variable is not used in a
statement (expr, return, init …) of
the same level of its declaration (in the

2-130

 JSF C++ Coding Rules

N. JSF++ Definition Polyspace Specification

same block) or is not used in two sub-
statements of its declaration.

Note:

• Non-used variables are reported.

• Initializations at definition are ignored
(not considered an access)

137 All declarations at file scope should be static
where possible.

138 Identifiers shall not simultaneously have
both internal and external linkage in the
same translation unit.

139 External objects will not be declared in more
than one file.

Reports all duplicate declarations inside
a translation unit. Reports when the
declaration localization is not the same in all
translation units.

140 The register storage class specifier shall not
be used.

141 A class, structure, or enumeration will not
be declared in the definition of its type.

Initialization

N. JSF++ Definition Polyspace Specification

142 All variables shall be initialized before use. Done with Non-initialized variable checks in
the software.

144 Braces shall be used to indicate and match
the structure in the non-zero initialization of
arrays and structures.

This covers partial initialization.

145 In an enumerator list, the '=' construct shall
not be used to explicitly initialize members
other than the first, unless all items are
explicitly initialized.

Generates one report for an enumerator list.

2-131

2 Coding Rule Sets and Concepts

Types

N. JSF++ Definition Polyspace Specification

147 The underlying bit representations of
floating point numbers shall not be used in
any way by the programmer.

Reports on casts with float pointers (except
with void*).

148 Enumeration types shall be used instead of
integer types (and constants) to select from a
limited series of choices.

Reports when non enumeration types are
used in switches.

Constants

N. JSF++ Definition Polyspace Specification

149 Octal constants (other than zero) shall not
be used.

150 Hexadecimal constants will be represented
using all uppercase letters.

151 Numeric values in code will not be used;
symbolic values will be used instead.

Reports direct numeric constants (except
integer/float value 1, 0) in expressions, non
-const initializations. and switch cases.
char constants are allowed. Does not report
on templates non-type parameter.

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

151.1 A string literal shall not be modified. Report when a char*, char[], or string
type is used not as const.

A violation is raised if a string literal (for
example, “ “) is cast as a non const.

Variables

N. JSF++ Definition Polyspace Specification

152 Multiple variable declarations shall not be
allowed on the same line.

2-132

 JSF C++ Coding Rules

Unions and Bit Fields

N. JSF++ Definition Polyspace Specification

153 Unions shall not be used.
154 Bit-fields shall have explicitly unsigned

integral or enumeration types only.

156 All the members of a structure (or class)
shall be named and shall only be accessed
via their names.

Reports unnamed bit-fields (unnamed fields
are not allowed).

Operators

N. JSF++ Definition Polyspace Specification

157 The right hand operand of a && or ||
operator shall not contain side effects.

Assumes rule 159 is not violated.

Messages in report file:

• The right hand operand of a && operator
shall not contain side effects.

• The right hand operand of a || operator
shall not contain side effects.

158 The operands of a logical && or || shall be
parenthesized if the operands contain binary
operators.

Messages in report file:

• The operands of a logical && shall be
parenthesized if the operands contain
binary operators.

• The operands of a logical || shall be
parenthesized if the operands contain
binary operators.

Exception for: X || Y || Z , Z&&Y &&Z
159 Operators ||, &&, and unary & shall not be

overloaded.
Messages in report file:

• Unary operator & shall not be
overloaded.

• Operator || shall not be overloaded.
• Operator && shall not be overloaded.

2-133

2 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Specification

160 An assignment expression shall be used
only as the expression in an expression
statement.

Only simple assignment, not +=, ++, etc.

162 Signed and unsigned values shall not
be mixed in arithmetic or comparison
operations.

163 Unsigned arithmetic shall not be used.
164 The right hand operand of a shift operator

shall lie between zero and one less than
the width in bits of the left-hand operand
(inclusive).

164.1 The left-hand operand of a right-shift
operator shall not have a negative value.

Detects constant case +. Found by the
software for dynamic cases.

165 The unary minus operator shall not be
applied to an unsigned expression.

166 The sizeof operator will not be used on
expressions that contain side effects.

168 The comma operator shall not be used.

Pointers and References

N. JSF++ Definition Polyspace Specification

169 Pointers to pointers should be avoided when
possible.

Reports second-level pointers, except for
arguments of main.

170 More than 2 levels of pointer indirection
shall not be used.

Only reports on variables/parameters.

171 Relational operators shall not be applied to
pointer types except where both operands
are of the same type and point to:

• the same object,
• the same function,
• members of the same object, or

Reports when relational operator are used
on pointer types (casts ignored).

2-134

 JSF C++ Coding Rules

N. JSF++ Definition Polyspace Specification

• elements of the same array (including
one past the end of the same array).

173 The address of an object with automatic
storage shall not be assigned to an object
which persists after the object has ceased to
exist.

174 The null pointer shall not be de-referenced. Done with checks in software.
175 A pointer shall not be compared to NULL or

be assigned NULL; use plain 0 instead.
Reports usage of NULL macro in pointer
contexts.

176 A typedef will be used to simplify program
syntax when declaring function pointers.

Reports non-typedef function pointers, or
pointers to member functions for types of
variables, fields, parameters. Returns type
of function, cast, and exception specification.

Type Conversions

N. JSF++ Definition Polyspace Specification

177 User-defined conversion functions should
be avoided.

Reports user defined conversion function,
non-explicit constructor with one parameter
or default value for others (even undefined
ones).

Does not report copy-constructor.

Additional message for constructor case:

This constructor should be flagged as
"explicit".

178 Down casting (casting from base to derived
class) shall only be allowed through one of
the following mechanism:

• Virtual functions that act like dynamic
casts (most likely useful in relatively
simple cases).

• Use of the visitor (or similar) pattern
(most likely useful in complicated cases).

Reports explicit down casting, dynamic_cast
included. (Visitor patter does not have a
special case.)

2-135

2 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Specification

179 A pointer to a virtual base class shall not be
converted to a pointer to a derived class.

Reports this specific down cast. Allows
dynamic_cast.

180 Implicit conversions that may result in a
loss of information shall not be used.

Reports the following implicit casts :

integer => smaller integer

unsigned => smaller or eq signed

signed => smaller or eq un-signed

integer => float float => integer

Does not report for cast to bool reports
for implicit cast on constant done with the
options -scalar-overflows-checks
signed-and-unsigned or -ignore-
constant-overflows

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

181 Redundant explicit casts will not be used. Reports useless cast: cast T to T. Casts to
equivalent typedefs are also reported.

182 Type casting from any type to or from
pointers shall not be used.

Does not report when Rule 181 applies.

184 Floating point numbers shall not be
converted to integers unless such a
conversion is a specified algorithmic
requirement or is necessary for a hardware
interface.

Reports float->int conversions. Does not
report implicit ones.

185 C++ style casts (const_cast,
reinterpret_cast, and static_cast)
shall be used instead of the traditional C-
style casts.

Flow Control Standards

N. JSF++ Definition Polyspace Specification

186 There shall be no unreachable code. Done with gray checks in the software.

2-136

 JSF C++ Coding Rules

N. JSF++ Definition Polyspace Specification

Bug Finder and Code Prover check this
coding rule differently. The analyses can
produce different results.

187 All non-null statements shall potentially
have a side-effect.

188 Labels will not be used, except in switch
statements.

189 The goto statement shall not be used.
190 The continue statement shall not be used.
191 The break statement shall not be used

(except to terminate the cases of a switch
statement).

192 All if, else if constructs will contain
either a final else clause or a comment
indicating why a final else clause is not
necessary.

else if should contain an else clause.

193 Every non-empty case clause in a switch
statement shall be terminated with a break
statement.

194 All switch statements that do not intend
to test for every enumeration value shall
contain a final default clause.

Reports only for missing default.

195 A switch expression will not represent a
Boolean value.

196 Every switch statement will have at least
two cases and a potential default.

197 Floating point variables shall not be used
as loop counters.

Assumes 1 loop parameter.

198 The initialization expression in a for
loop will perform no actions other than
to initialize the value of a single for loop
parameter.

Reports if loop parameter cannot be
determined. Assumes Rule 200 is not
violated. The loop variable parameter is
assumed to be a variable.

2-137

2 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Specification

199 The increment expression in a for loop will
perform no action other than to change a
single loop parameter to the next value for
the loop.

Assumes 1 loop parameter (Rule 198),
with non class type. Rule 200 must not be
violated for this rule to be reported.

200 Null initialize or increment expressions in
for loops will not be used; a while loop
will be used instead.

201 Numeric variables being used within a
for loop for iteration counting shall not be
modified in the body of the loop.

Assumes 1 loop parameter (AV rule 198),
and no alias writes.

Expressions

N. JSF++ Definition Polyspace Specification

202 Floating point variables shall not be tested
for exact equality or inequality.

Reports only direct equality/inequality.
Check done for all expressions.

203 Evaluation of expressions shall not lead to
overflow/underflow.

Done with overflow checks in the software.

204 A single operation with side-effects shall
only be used in the following contexts:

• by itself
• the right-hand side of an assignment
• a condition
• the only argument expression with a

side-effect in a function call
• condition of a loop
• switch condition
• single part of a chained operation

Reports when:

• A side effect is found in a return
statement

• A side effect exists on a single value, and
only one operand of the function call has
a side effect.

204.1 The value of an expression shall be the
same under any order of evaluation that the
standard permits.

Reports when:

• Variable is written more than once in an
expression

• Variable is read and write in sub-
expressions

2-138

 JSF C++ Coding Rules

N. JSF++ Definition Polyspace Specification

• Volatile variable is accessed more than
once

Note: Read-write operations such as ++, are
only considered as a write.

205 The volatile keyword shall not be used
unless directly interfacing with hardware.

Reports if volatile keyword is used.

Memory Allocation

N. JSF++ Definition Polyspace Specification

206 Allocation/deallocation from/to the free store
(heap) shall not occur after initialization.

Reports calls to C library functions: malloc
/ calloc / realloc / free and all new/
delete operators in functions or methods.

Fault Handling

N. JSF++ Definition Polyspace Specification

208 C++ exceptions shall not be used. Reports try, catch, throw spec, and
throw.

Portable Code

N. JSF++ Definition Polyspace Specification

209 The basic types of int, short, long, float
and double shall not be used, but specific-
length equivalents should be typedef'd
accordingly for each compiler, and these type
names used in the code.

Only allows use of basic types through direct
typedefs.

213 No dependence shall be placed on C++’s
operator precedence rules, below arithmetic
operators, in expressions.

Reports when a binary operation has one
operand that is not parenthesized and is an
operation with inferior precedence level.

Reports bitwise and shifts operators that
are used without parenthesis and binary
operation arguments.

2-139

2 Coding Rule Sets and Concepts

N. JSF++ Definition Polyspace Specification

215 Pointer arithmetic will not be used. Reports:p + Ip - Ip++p--p+=p-=

Allows p[i].

Unsupported JSF++ Rules

• “Code Size and Complexity” on page 2-140
• “Rules” on page 2-141
• “Environment” on page 2-141
• “Libraries” on page 2-141
• “Header Files” on page 2-141
• “Style” on page 2-142
• “Classes” on page 2-142
• “Namespaces” on page 2-144
• “Templates” on page 2-144
• “Functions” on page 2-144
• “Comments” on page 2-145
• “Initialization” on page 2-145
• “Types” on page 2-146
• “Unions and Bit Fields” on page 2-146
• “Operators” on page 2-146
• “Type Conversions” on page 2-146
• “Expressions” on page 2-146
• “Memory Allocation” on page 2-147
• “Portable Code” on page 2-147
• “Efficiency Considerations” on page 2-147
• “Miscellaneous” on page 2-147
• “Testing” on page 2-147

Code Size and Complexity

N. JSF++ Definition

2 There shall not be any self-modifying code.

2-140

 JSF C++ Coding Rules

Rules

N. JSF++ Definition

4 To break a “should” rule, the following approval must be received by the developer:

• approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)

5 To break a “will” or a “shall” rule, the following approvals must be received by the
developer:

• approval from the software engineering lead (obtained by the unit approval in the
developmental CM tool)

• approval from the software product manager (obtained by the unit approval in the
developmental CM tool)

6 Each deviation from a “shall” rule shall be documented in the file that contains the
deviation. Deviations from this rule shall not be allowed, AV Rule 5 notwithstanding.

7 Approval will not be required for a deviation from a “shall” or “will” rule that complies
with an exception specified by that rule.

Environment

N. JSF++ Definition

10 Values of character types will be restricted to a defined and documented subset of ISO
10646 1.

Libraries

N. JSF++ Definition

16 Only DO-178B level A [15] certifiable or SEAL 1 C/C++ libraries shall be used with safety-
critical (i.e. SEAL 1) code.

Header Files

N. JSF++ Definition

34 Header files should contain logically related declarations only.
36 Compilation dependencies should be minimized when possible.

2-141

2 Coding Rule Sets and Concepts

N. JSF++ Definition

37 Header (include) files should include only those header files that are required for them to
successfully compile. Files that are only used by the associated .cpp file should be placed in
the .cpp file — not the .h file.

38 Declarations of classes that are only accessed via pointers (*) or references (&) should be
supplied by forward headers that contain only forward declarations.

Style

N. JSF++ Definition

45 All words in an identifier will be separated by the ‘_’ character.
49 All acronyms in an identifier will be composed of uppercase letters.
55 The name of a header file should reflect the logical entity for which it provides

declarations.
56 The name of an implementation file should reflect the logical entity for which it provides

definitions and have a “.cpp” extension (this name will normally be identical to the header
file that provides the corresponding declarations.)

At times, more than one .cpp file for a given logical entity will be required. In these cases,
a suffix should be appended to reflect a logical differentiation.

Classes

N. JSF++ Definition

64 A class interface should be complete and minimal.
65 A structure should be used to model an entity that does not require an invariant.
66 A class should be used to model an entity that maintains an invariant.
69 A member function that does not affect the state of an object (its instance variables) will be

declared const. Member functions should be const by default. Only when there is a clear,
explicit reason should the const modifier on member functions be omitted.

70 A class will have friends only when a function or object requires access to the private
elements of the class, but is unable to be a member of the class for logical or efficiency
reasons.

70.1 An object shall not be improperly used before its lifetime begins or after its lifetime ends.
71 Calls to an externally visible operation of an object, other than its constructors, shall not

be allowed until the object has been fully initialized.

2-142

 JSF C++ Coding Rules

N. JSF++ Definition

72 The invariant for a class should be:

• A part of the postcondition of every class constructor,
• A part of the precondition of the class destructor (if any),
• A part of the precondition and postcondition of every other publicly accessible

operation.
73 Unnecessary default constructors shall not be defined.
77 A copy constructor shall copy all data members and bases that affect the class invariant (a

data element representing a cache, for example, would not need to be copied).
80 The default copy and assignment operators will be used for classes when those operators

offer reasonable semantics.
84 Operator overloading will be used sparingly and in a conventional manner.
85 When two operators are opposites (such as == and !=), both will be defined and one will be

defined in terms of the other.
86 Concrete types should be used to represent simple independent concepts.
87 Hierarchies should be based on abstract classes.
90 Heavily used interfaces should be minimal, general and abstract.
91 Public inheritance will be used to implement “is-a” relationships.
92 A subtype (publicly derived classes) will conform to the following guidelines with respect

to all classes involved in the polymorphic assignment of different subclass instances to the
same variable or parameter during the execution of the system:

• Preconditions of derived methods must be at least as weak as the preconditions of the
methods they override.

• Postconditions of derived methods must be at least as strong as the postconditions of
the methods they override.

In other words, subclass methods must expect less and deliver more than the base
class methods they override. This rule implies that subtypes will conform to the Liskov
Substitution Principle.

93 “has-a” or “is-implemented-in-terms-of” relationships will be modeled through membership
or non-public inheritance.

2-143

2 Coding Rule Sets and Concepts

Namespaces

N. JSF++ Definition

100 Elements from a namespace should be selected as follows:

• using declaration or explicit qualification for few (approximately five) names,
• using directive for many names.

Templates

N. JSF++ Definition

101 Templates shall be reviewed as follows:

1 with respect to the template in isolation considering assumptions or requirements
placed on its arguments.

2 with respect to all functions instantiated by actual arguments.
102 Template tests shall be created to cover all actual template instantiations.
103 Constraint checks should be applied to template arguments.
105 A template definition’s dependence on its instantiation contexts should be minimized.
106 Specializations for pointer types should be made where appropriate.

Functions

N. JSF++ Definition

112 Function return values should not obscure resource ownership.
115 If a function returns error information, then that error information will be tested.
117 Arguments should be passed by reference if NULL values are not possible:

• 117.1 – An object should be passed as const T& if the function should not change the
value of the object.

• 117.2 – An object should be passed as T& if the function may change the value of the
object.

118 Arguments should be passed via pointers if NULL values are possible:

• 118.1 – An object should be passed as const T* if its value should not be modified.
• 118.2 – An object should be passed as T* if its value may be modified.

2-144

 JSF C++ Coding Rules

N. JSF++ Definition

120 Overloaded operations or methods should form families that use the same semantics,
share the same name, have the same purpose, and that are differentiated by formal
parameters.

122 Trivial accessor and mutator functions should be inlined.
123 The number of accessor and mutator functions should be minimized.
124 Trivial forwarding functions should be inlined.
125 Unnecessary temporary objects should be avoided.

Comments

N. JSF++ Definition

127 Code that is not used (commented out) shall be deleted.

Note: This rule cannot be annotated in the source code.
128 Comments that document actions or sources (e.g. tables, figures, paragraphs, etc.) outside

of the file being documented will not be allowed.
129 Comments in header files should describe the externally visible behavior of the functions

or classes being documented.
130 The purpose of every line of executable code should be explained by a comment, although

one comment may describe more than one line of code.
131 One should avoid stating in comments what is better stated in code (i.e. do not simply

repeat what is in the code).
132 Each variable declaration, typedef, enumeration value, and structure member will be

commented.
134 Assumptions (limitations) made by functions should be documented in the function’s

preamble.

Initialization

N. JSF++ Definition

143 Variables will not be introduced until they can be initialized with meaningful values.
(See also AV Rule 136, AV Rule 142, and AV Rule 73 concerning declaration scope,
initialization before use, and default constructors respectively.)

2-145

2 Coding Rule Sets and Concepts

Types

N. JSF++ Definition

146 Floating point implementations shall comply with a defined floating point standard.

The standard that will be used is the ANSI/IEEE® Std 754 [1].

Unions and Bit Fields

N. JSF++ Definition

155 Bit-fields will not be used to pack data into a word for the sole purpose of saving space.

Operators

N. JSF++ Definition

167 The implementation of integer division in the chosen compiler shall be determined,
documented and taken into account.

Type Conversions

N. JSF++ Definition

183 Every possible measure should be taken to avoid type casting.

Expressions

N. JSF++ Definition

204 A single operation with side-effects shall only be used in the following contexts:

1 by itself
2 the right-hand side of an assignment
3 a condition
4 the only argument expression with a side-effect in a function call
5 condition of a loop
6 switch condition
7 single part of a chained operation

2-146

 JSF C++ Coding Rules

Memory Allocation

N. JSF++ Definition

207 Unencapsulated global data will be avoided.

Portable Code

N. JSF++ Definition

210 Algorithms shall not make assumptions concerning how data is represented in memory
(e.g. big endian vs. little endian, base class subobject ordering in derived classes, nonstatic
data member ordering across access specifiers, etc.).

210.1 Algorithms shall not make assumptions concerning the order of allocation of nonstatic
data members separated by an access specifier.

211 Algorithms shall not assume that shorts, ints, longs, floats, doubles or long doubles begin
at particular addresses.

212 Underflow or overflow functioning shall not be depended on in any special way.
214 Assuming that non-local static objects, in separate translation units, are initialized in a

special order shall not be done.

Efficiency Considerations

N. JSF++ Definition

216 Programmers should not attempt to prematurely optimize code.

Miscellaneous

N. JSF++ Definition

217 Compile-time and link-time errors should be preferred over run-time errors.
218 Compiler warning levels will be set in compliance with project policies.

Testing

N. JSF++ Definition

219 All tests applied to a base class interface shall be applied to all derived class interfaces
as well. If the derived class poses stronger postconditions/invariants, then the new
postconditions /invariants shall be substituted in the derived class tests.

2-147

2 Coding Rule Sets and Concepts

N. JSF++ Definition

220 Structural coverage algorithms shall be applied against flattened classes.
221 Structural coverage of a class within an inheritance hierarchy containing virtual functions

shall include testing every possible resolution for each set of identical polymorphic
references.

2-148

3

Check Coding Rules from the
Polyspace Environment

• “Activate Coding Rules Checker” on page 3-2
• “Select Specific MISRA or JSF Coding Rules” on page 3-6
• “Create Custom Coding Rules” on page 3-9
• “Format of Custom Coding Rules File” on page 3-11
• “Exclude Files from Analysis” on page 3-12
• “Allow Custom Pragma Directives” on page 3-13
• “Specify Boolean Types” on page 3-14
• “Find Coding Rule Violations” on page 3-15
• “Review Coding Rule Violations” on page 3-16
• “Filter and Group Coding Rule Violations” on page 3-18

3 Check Coding Rules from the Polyspace Environment

Activate Coding Rules Checker

This example shows how to activate the coding rules checker before you start an analysis.
This activation enables Polyspace Bug Finder to search for coding rule violations. You
can view the coding rule violations in your analysis results.

1 Open project configuration.
2 On the Configuration pane, select Coding Rules & Code Metrics.
3 Select the check box for the type of coding rules that you want to check.

For C code, you can check compliance with:

• MISRA C:2004
• MISRA AC AGC
• MISRA C:2012

If you have generated code, select the Use generated code requirements
option to use the MISRA C:2012 categories for generated code.

• Custom coding rules

For C++ code, you can check compliance with:

• MISRA C++: 2008
• JSF C++
• Custom coding rules

4 For each rule type that you select, from the drop-down list, select the subset of rules
to check.

MISRA C:2004

Option Description

required-rules All required MISRA C:2004 coding rules.
all-rules AllMISRA C:2004 coding rules (required and advisory).

SQO-subset1

A small subset of MISRA C:2004 rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

3-2

 Activate Coding Rules Checker

Option Description

SQO-subset2

A second subset of rules that include the rules in SQO-
subset1 and contain some additional rules. In Polyspace
Code Prover, observing the additional rules can further
reduce the number of unproven results.

custom A set of MISRA C:2004 coding rules that you specify.

MISRA AC AGC

Option Description

OBL-rules All required MISRA AC AGC coding rules.

OBL-REC-rules
All required and recommended MISRA AC AGC coding
rules.

all-rules All required, recommended, and readability coding rules.

SQO-subset1

A small subset of MISRA AC AGC rules. In Polyspace
Code Prover, observing these rules can reduce the number
of unproven results.

SQO-subset2

A second subset of MISRA AC AGC rules that include the
rules in SQO-subset1 and contain some additional rules.
In Polyspace Code Prover, observing the additional rules
can further reduce the number of unproven results.

custom A set of MISRA AC AGC coding rules that you specify.

MISRA C:2012

Option Description

mandatory

All mandatory MISRA C:2012 coding rules. If you have
generated code, also use the Use generated code
requirements option categorization for generated code.

mandatory-required

All mandatory and required MISRA C:2012 coding rules.
If you have generated code, also use the Use generated
code requirements option categorization for generated
code.

all
All MISRA C:2012 coding rules (mandatory, required, and
advisory).

3-3

3 Check Coding Rules from the Polyspace Environment

Option Description

SQO-subset1

A small subset of MISRA C rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

SQO-subset2

A second subset of rules that include the rules in SQO-
subset1 and contain some additional rules. In Polyspace
Code Prover, observing the additional rules can further
reduce the number of unproven results.

custom A set of MISRA C:2012 coding rules that you specify.

MISRA C++

Option Description

required-rules All required MISRA C++ coding rules.
all-rules All required and advisory MISRA C++ coding rules.

SQO-subset1

A small subset of MISRA C++ rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

SQO-subset2

A second subset of rules with indirect impact on the
selectivity in addition to SQO-subset1. In Polyspace Code
Prover, observing the additional rules can further reduce
the number of unproven results.

custom A specified set of MISRA C++ coding rules.

JSF C++

Option Description

shall-rules Shall rules are mandatory requirements. These rules
require verification.

shall-will-rules All Shall and Will rules. Will rules are intended to be
mandatory requirements. However, these rules do not
require verification.

all-rules All Shall, Will, and Should rules. Should rules are
advisory rules.

custom A set of JSF C++ coding rules that you specify.
3-4

 Activate Coding Rules Checker

5 If you select Check custom rules, specify the path to your custom rules file or click
Edit to create one.

When rules checking is complete, the software displays the coding rule violations in
purple on the Results List pane.

Related Examples
• “Select Specific MISRA or JSF Coding Rules” on page 3-6
• “Create Custom Coding Rules” on page 3-9
• “Exclude Files from Analysis” on page 3-12

More About
• “Rule Checking” on page 2-2

3-5

3 Check Coding Rules from the Polyspace Environment

Select Specific MISRA or JSF Coding Rules

This example shows how to specify a subset of MISRA or JSF rules for the coding rules
checker. If you select custom from the MISRA or JSF drop-down list, you must provide a
file that specifies the rules to check.

1 Open the project configuration.
2 In the Configuration tree view, select Coding Rules & Code Metrics.
3 Select the check box for the type of coding rules you want to check.
4 From the corresponding drop-down list, select custom. The software displays a new

field for your custom file.
5 To the right of this field, click Edit. A New File window opens, displaying a table of

rules.

3-6

 Select Specific MISRA or JSF Coding Rules

6 If you already have a customized rule file you want to edit, reload your customization

using the button.
7 Select the rules you want to check.

You can select categories of rules (required, advisory, mandatory), subsets of rules by
rule chapter, or individual rules.

8 When you are finished, click OK.

3-7

3 Check Coding Rules from the Polyspace Environment

9 For new files, use the Save As dialog box the opens to save your customization as a
rules file.

10 In the Configuration window, the full path to the rules file appears in the custom
field. To reuse this customized set of rules for other projects, enter this path name in
the dialog box.

Related Examples
• “Activate Coding Rules Checker” on page 3-2
• “Create Custom Coding Rules” on page 3-9

More About
• “Rule Checking” on page 2-2

3-8

 Create Custom Coding Rules

Create Custom Coding Rules

This example shows how to create a custom coding rules file. You can use this file to
check names or text patterns in your source code against custom rules that you specify.
For each rule, you specify a pattern in the form of a regular expression. The software
compares the pattern against identifiers in the source code and determines whether the
custom rule is violated.

The tutorial uses the following code stored in a file printInitialValue.c:

#include <stdio.h>

typedef struct {

 int a;

 int b;

} collection;

void main()

{

 collection myCollection= {0,0};

 printf("Initial values in the collection are %d and %d.",

 myCollection.a,myCollection.b);

}

1 Create a Polyspace project. Add printInitialValue.c to the project.
2 On the Configuration pane, select Coding Rules & Code Metrics. Select the

Check custom rules box.
3

Click .

The New File window opens, displaying a table of rule groups.
4 Specify the rules to check for.

a First, clear the Custom rules check box to turn off checking of custom rules.
b Expand the 4 Structs node. For the option 4.3 All struct fields must follow

the specified pattern:

Column Title Action

Status Select .

3-9

3 Check Coding Rules from the Polyspace Environment

Column Title Action

Convention Enter All struct fields must
begin with s_ and have capital

letters or digits

Pattern Enter s_[A-Z0-9_]+
Comment Leave blank. This column is for

comments that appear in the coding
rules file alone.

5 Save the file and run the analysis. On the Results List pane, you see two violations
of rule 4.3. Select the first violation.

a On the Source pane, the line int a; is marked.
b On the Result Details pane, you see the error message you had entered, All

struct fields must begin with s_ and have capital letters

6 Right-click on the Source pane and select Open Editor. The file
printInitialValue.c opens in the Code Editor pane or an external text editor
depending on your Preferences.

7 In the file, replace all instances of a with s_A and b with s_B. Rerun the analysis.

The custom rule violations no longer appear on the Results List pane.

Related Examples
• “Activate Coding Rules Checker” on page 3-2
• “Select Specific MISRA or JSF Coding Rules” on page 3-6
• “Exclude Files from Analysis” on page 3-12

More About
• “Rule Checking” on page 2-2
• “Format of Custom Coding Rules File” on page 3-11

3-10

 Format of Custom Coding Rules File

Format of Custom Coding Rules File

In a custom coding rules file, each rule appears in the following format:
N.n off|on

convention=violation_message

pattern=regular_expression

• N.n — Custom rule number, for example, 1.2.
• off — Rule is not considered.
• on — The software checks for violation of the rule. After analysis, it displays the

coding rule violation on the Results List pane.
• violation_message — Software displays this text in an XML file within the

Results/Polyspace-Doc folder.
• regular_expression — Software compares this text pattern against a source code

identifier that is specific to the rule. See “Custom Coding Rules”.

The keywords convention= and pattern= are optional. If present, they apply to
the rule whose number immediately precedes these keywords. If convention= is not
given for a rule, then a standard message is used. If pattern= is not given for a rule,
then the default regular expression is used, that is, .*.

Use the symbol # to start a comment. Comments are not allowed on lines with the
keywords convention= and pattern=.

The following example contains three custom rules: 1.1, 8.1, and 9.1.
Custom rules configuration file

1.1 off # Disable custom rule number 1.1

8.1 on # Violation of custom rule 8.1 produces a warning

convention=Global constants must begin by G_ and must be in capital letters.

pattern=G_[A-Z0-9_]*

9.1 on # Non-adherence to custom rule 9.1 produces a warning

convention=Global variables should begin by g_.

pattern=g_.*

Related Examples
• “Create Custom Coding Rules” on page 3-9

3-11

3 Check Coding Rules from the Polyspace Environment

Exclude Files from Analysis

This example shows how to specify files that you do not want analyzed. For instance,
sometimes, you have to add header files from a third-party library to your Polyspace
project for a precise analysis, but you cannot address defects in those header files.
Therefore, you do not want analysis results on those files.

By default:

• Results are generated for all source files and header files in the same folders as source
files.

• Results are not generated for the remaining header files in your project.

You can change this default behavior and specify your own set of files on which you do
not want results.

1 Open the project configuration.
2 In the Configuration tree view, select Inputs & Stubbing.
3 Use a combination of the following options to suppress results from files in which you

are not interested.

• Do not generate results for (-do-not-generate-results-for)
• Generate results for sources and (-generate-results-for)

For instance, you can suppress results from certain folders and unsuppress them
only for certain files in those folders.

Related Examples
• “Activate Coding Rules Checker” on page 3-2

More About
• “Rule Checking” on page 2-2

3-12

 Allow Custom Pragma Directives

Allow Custom Pragma Directives

This example shows how to exclude custom pragma directives from coding rules
checking. MISRA C rule 3.4 requires checking that pragma directives are documented
within the documentation of the compiler. However, you can allow undocumented
pragma directives to be present in your code.

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules & Code Metrics.
3

To the right of Allowed pragmas, click .

In the Pragma view, the software displays an active text field.
4 In the text field, enter a pragma directive.
5

To remove a directive from the Pragma list, select the directive. Then click .

Related Examples
• “Activate Coding Rules Checker” on page 3-2

More About
• “Rule Checking” on page 2-2

3-13

3 Check Coding Rules from the Polyspace Environment

Specify Boolean Types

This example shows how to specify data types you want Polyspace to consider as Boolean
during MISRA C rules checking. The software applies this redefinition only to data types
defined by typedef statements.

The use of this option is related to checking of the following rules:

• MISRA C:2004 and MISRA AC AGC —12.6, 13.2, 15.4.

For more information, see “MISRA C:2004 and MISRA AC AGC Coding Rules” on
page 2-14.

• MISRA C:2012 — 10.1, 10.3, 10.5, 14.4 and 16.7

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules & Code Metrics.
3

To the right of Effective boolean types, click .

In the Type view, the software displays an active text field.
4 In the text field, specify the data type that you want Polyspace to treat as Boolean.
5

To remove a data type from the Type list, select the data type. Then click .

Related Examples
• “Activate Coding Rules Checker” on page 3-2

More About
• “Rule Checking” on page 2-2

3-14

 Find Coding Rule Violations

Find Coding Rule Violations

This example shows how to check for coding rule violations alone.

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules & Code Metrics. Activate

the desired coding rule checker.

For more information, see “Activate Coding Rules Checker” on page 3-2.
3 If you select certain rules, the analysis can complete quicker than checking other

rules.

For more information, see “Coding Rule Subsets Checked Early in Analysis” on page
2-61.

4 Specify that the analysis must not look for defects.

• In the Configuration tree view, select Bug Finder Analysis.
• Clear the Find defects check box.

5
Click to run the coding rules checker without checking defects.

Related Examples
• “Activate Coding Rules Checker” on page 3-2
• “Select Specific MISRA or JSF Coding Rules” on page 3-6
• “Review Coding Rule Violations” on page 3-16

More About
• “Rule Checking” on page 2-2

3-15

3 Check Coding Rules from the Polyspace Environment

Review Coding Rule Violations

This example shows how to review coding rule violations once code analysis is complete.
After analysis, the Results List pane displays the rule violations with a

• symbol for predefined coding rules, MISRA or JSF.
• symbol for custom coding rules.

1 Select a coding-rule violation on the Results List pane.
2 On the Result Details pane, view the location and description of the violated rule.

In the source code, the line containing the violation appears highlighted.

3 For certain rules, use additional information available for investigating the rule
violation.

•
For MISRA C: 2012 rules, on the Result Details pane, click the icon to
see the rationale for the rule. In some cases, you can also see code examples
illustrating the violation.

• For MISRA C: 2012 and MISRA C++ rules that involve more than one location in
the code, the Result Details pane shows both locations as an event history. To
navigate to a location in the source code, click the corresponding event.

3-16

 Review Coding Rule Violations

4 Review the violation in your code.

a Determine whether you must fix the code to avoid the violation.
b If you choose to retain the code, on the Result Details pane, add a comment

explaining why you retain the code. This comment helps you or other reviewers
avoid reviewing the same coding rule violation twice.

You can also assign a Severity and Status to the coding rule violation.
5 After you have fixed or justified the coding rule violations, run the analysis again.

Related Examples
• “Activate Coding Rules Checker” on page 3-2
• “Find Coding Rule Violations” on page 3-15
• “Filter and Group Coding Rule Violations” on page 3-18

3-17

3 Check Coding Rules from the Polyspace Environment

Filter and Group Coding Rule Violations
This example shows how to use filters in the Results List pane to focus on specific kinds
of coding rule violations. By default, the software displays both coding rule violations and
defects.

In this section...

“Filter Coding Rules” on page 3-18
“Group Coding Rules” on page 3-18
“Suppress Certain Rules from Display in One Click” on page 3-18

Filter Coding Rules

1
On the Results List pane, select the icon on the Check column header.

2 From the context menu, clear the All check box.
3 Select the violated rule numbers that you want to focus on.
4 Click OK.

To filter out all results other than coding rule violations, use the filters on the Type or
Family column header.

You can also filter rule violations using the Coding rule violations by rule (Top 10
only) graph on the Dashboard pane in the Polyspace user interface. See “Filter and
Group Results” on page 5-4.

Group Coding Rules

1 On the Results List pane, from the list, select Family.

The rules are grouped by numbers. Each group corresponds to a certain code
construct.

2 Expand the group nodes to select an individual coding rule violation.

Suppress Certain Rules from Display in One Click

Instead of filtering individual rules from display each time you open your results, you
can limit the display of rule violations in one click. Use the drop-down list in the left of

3-18

 Filter and Group Coding Rule Violations

the Results List pane toolbar. You can add some predefined options to this list or create
your own options. You can share the option file to help developers in your organization
review violations of at least certain coding rules.

1 In the Polyspace user interface, select Tools > Preferences.
2 On the Review Scope tab, do one of the following:

• To add predefined options to the drop-down list on the Results List pane, select
Include Quality Objectives Scopes.

The Scope Name list shows additional options, HIS, SQO-4, SQO-5, and SQO-6.
Select an option to see which rules are suppressed from display.

In addition to coding rule violations, the options impose limits on the display of
code metrics and defects.

• To create your own option in the drop-down list on the Results List pane, select
New. Save your option file.

On the left pane, select a rule set such as MISRA C:2012. On the right pane, to
suppress a rule from display, clear the box next to the rule.

To suppress all rules belonging to a group such as The essential type model,
clear the box next to the group name. For more information on the groups, see
“Coding Rules”. If only a fraction of rules in a group is selected, the check box
next to the group name displays a symbol.

To suppress all rules belonging to a category such as advisory, clear the box
next to the category name on the top of the right pane. If only a fraction of rules
in a category is selected, the check box next to the category name displays a
symbol.

3-19

3 Check Coding Rules from the Polyspace Environment

3 Select Apply or OK.

On the Results List pane, the drop-down list on the Results List pane displays the
additional options.

4 Select the option that you want. The rules that you suppress do not appear on the
Results List pane.

Related Examples
• “Activate Coding Rules Checker” on page 3-2
• “Review Coding Rule Violations” on page 3-16

3-20

4

Find Bugs From the Polyspace
Environment

• “Choose Specific Defects” on page 4-2
• “Run Local Analysis” on page 4-3
• “Run Remote Batch Analysis” on page 4-4
• “Monitor Analysis” on page 4-5
• “Specify Results Folder” on page 4-6

4 Find Bugs From the Polyspace Environment

Choose Specific Defects

There are two preset configurations for Bug Finder defects, but you can also customize
which defects to check for during the analysis.

1 On the Configuration pane, select Bug Finder Analysis.
2 From the Find defects menu, select a set of defects. The options are:

• default for the default list of defects. This list contains defects that are
applicable to most coding projects. To see the defects in the default list, expand
the nodes.

• all for all defects.
• custom to add defects to the default list or remove defects from it.

4-2

 Run Local Analysis

Run Local Analysis

Before running an analysis from the Polyspace interface, you must set up your project’s
source files and analysis options. For more information, see “Create New Project
Manually” on page 1-2.

1 Select a project to analyze.
2

Click the button.
3 Monitor the analysis on the Output Summary pane.

During a Polyspace Bug Finder analysis, the software first compiles the project and
looks for coding rule errors. If the files have compilation errors, a message appears
in the Output Summary pane and the offending files are ignored during the later
analysis stages. Files with compilation problems do not appear in the results.

4 Once some results are available, start reviewing the results by selecting the link

in the Output Summary window or by clicking the button on the
toolbar. This button reactivates as more results are ready.

5 If you viewed some of the results during the analysis, click the toolbar button

 to load the rest of your results.

If you did not load results during the analysis, the Results List pane automatically
opens with your completed results.

After analysis is over, the Dashboard pane shows the number of files analyzed. If
some of your files were only partially analyzed because of compilation errors, this
pane contains a link stating that some files failed to compile. To see the compilation
errors, click the link and navigate to the Output Summary pane.

Related Examples
• “Run Remote Batch Analysis” on page 4-4
• “Create New Project Manually” on page 1-2
• “Open Results” on page 5-2
• “Review and Fix Results” on page 5-30

4-3

4 Find Bugs From the Polyspace Environment

Run Remote Batch Analysis

Before running a batch analysis, you must set up your project’s source files, analysis
options, and remote analysis settings. If you have not done so, see “Create New Project
Manually” on page 1-2 and “Set Up Polyspace Metrics”.

1 Select a project to analyze.
2 On the Configuration pane, select Distributed Computing.
3 Select Batch.
4 If you want to store your results in the Polyspace Metrics repository, select Add to

results repository.

Otherwise, clear this check box.
5

Select the button.
6 To monitor the analysis, select Tools > Open Job Monitor.

Once the analysis is complete, you can open your results from the Results folder, or
download them from Polyspace Metrics.

If the analysis stops after compilation and you have to restart the analysis, to
avoid restarting from the compilation phase, use the option -submit-job-from-
previous-compilation-results.

Related Examples
• “Open Results” on page 5-2
• “View Results List in Polyspace Metrics” on page 18-23

4-4

 Monitor Analysis

Monitor Analysis

To monitor the progress of a local analysis, use the following panes in the Polyspace Bug
Finder interface. To open or close one of the tabs, select Window > Show/Hide View.

• Output Summary — Displays progress of analysis, compile phase messages and
errors. To search for a term, in the Search field, enter the required term. Click the up
or down arrow to move sequentially through occurrences of the term.

• Full Log — This tab displays messages, errors, and statistics for the phases of the
analysis. To search for a term, in the Search field, enter the required term. Click the
up arrow or down arrow to move sequentially through occurrences of this term.

At the end of a local analysis, the Dashboard tab displays statistics, for example, code
coverage and check distribution.

To monitor the progress of a remote analysis:

1 From the Polyspace interface, select Tools > Open Job Monitor.
2 In the Polyspace Job Monitor, follow your queued job to monitor progress.

4-5

4 Find Bugs From the Polyspace Environment

Specify Results Folder

By default, Polyspace Bug Finder saves your results in the same directory as your project
in a folder called Results. Each subsequent analysis overwrites the old results.

However, to specify a different location for results:

1 On the Project Browser, right-click the Results folder.
2 Select Choose a Result Folder.
3 In the Choose a Result Folder window, navigate to the new results folder and click

Select.

On the Project Browser, the new results folder appears.

The previous results folder disappears from the Project Browser. However, the
results have not been deleted, just removed from the Polyspace interface. To view the
previous results, use File > Open Result.

4-6

5

View Results in the Polyspace
Environment

• “Open Results” on page 5-2
• “Filter and Group Results” on page 5-4
• “Classification of Defects by Impact” on page 5-8
• “Limit Display of Defects” on page 5-16
• “Generate Reports” on page 5-18
• “Export Results to Text File” on page 5-21
• “Customize Existing Report Template” on page 5-25
• “Review and Fix Results” on page 5-30
• “Review Code Metrics” on page 5-33
• “Navigate to Root Cause of Defect” on page 5-37
• “Results Folder Contents” on page 5-40
• “Windows Used to Review Results” on page 5-41
• “Bug Finder Defect Groups” on page 5-55
• “HIS Code Complexity Metrics” on page 5-60
• “Common Weakness Enumeration from Bug Finder Defects” on page 5-62
• “Find CWE Identifiers from Defects” on page 5-64
• “Mapping Between CWE Identifiers and Defects” on page 5-66
• “Mapping Between CERT C Standards and Polyspace Results” on page 5-80

5 View Results in the Polyspace Environment

Open Results

This example shows how to open Polyspace Bug Finder results. Before you open the
results, you must start a Polyspace Bug Finder analysis on your source files. The
analysis produces a results file with the extension .psbf.

Open Results From Active Project

Suppose that you have a project called Bug_Finder_Example open in the
Project Browser. After an analysis, the results appear under the project as
Result_Bug_Finder_Example. While a local analysis is running, you can start
reviewing your results in real time. After you start a local analysis, a button appears on
the toolbar to show you the status of the analysis:

•
 — The analysis is running. No results to load.

•
 — The analysis is running and new results are available to start

reviewing. Click this button to load the new results in the Results List. This button
reactivates every time more results are available.

•
 — The analysis is complete, but you have not loaded all results. Click

this button to load the last set of results.

If you do not view partial results during the analysis, at the end of the analysis,
your results open automatically. To manually open results, double-click
Result_Bug_Finder_Example.

After analysis is over, the Dashboard pane shows the number of files analyzed. If some
of your files were not analyzed because of compilation errors, to see which files were
not analyzed, click the Code covered by analysis graph. For more information, see
“Dashboard” on page 5-41.

Open Results File From File Browser

1 Select File > Open. The Open File browser opens.
2 Navigate to the result folder containing the file with extension .psbf. For example,

navigate to matlabroot\polyspace\examples\cxx\Bug_Finder_Example
\Results\.

5-2

 Open Results

3 Select the file. Click Open.

More About
• “Results Folder Contents” on page 5-40
• “Windows Used to Review Results” on page 5-41

5-3

5 View Results in the Polyspace Environment

Filter and Group Results

This example shows how to filter and group defects on the Results List pane. To
organize your review of results, use filters and groups when you want to:

• Review only high-impact defects.

For more information on impact, see “Classification of Defects by Impact” on page
5-8.

• Review certain types of defects in preference to others.

For instance, you first want to address the defects resulting from Missing or invalid
return statement.

• Review only new results found since the last analysis.
• Not address the full set of coding rule violations detected by the coding rules checker.
• Review only those defects that you have already assigned a certain status.

For instance, you want to review only those defects to which you have assigned the
status, Investigate.

• Review defects from a particular file or function. Because of continuity of code,
reviewing these defects together can help you organize your review process.

If you have written the code for a particular source file, you can review the defects
only in that file.

Filter Results

You can filter results using graphs on the Dashboard pane or filters on the Results
List pane. You can generate reports using only the results that are currently on display.
See “Generate Reports” on page 5-18.

Filter Using Dashboard

The Dashboard pane provides a graphical overview of the results. You can click the
elements on the graphs to filter results. For instance, you can use the following graphs:

• Defect distribution by impact: If you click a region on this pie chart that
corresponds to the impact High, the Results List pane shows high-impact defects
only.

5-4

 Filter and Group Results

• Defect distribution by category (Top 10 only): If you click a column
corresponding to a defect, the Results List pane shows instances of that defect only.

• Coding rule violations by rule (Top 10 only): If you click a column
corresponding to a coding rule, the Results List pane shows violations of that rule
only.

To clear filters from the Dashboard pane, select the link View results in this scope.
This action clears filters and displays the available results in the scope that you choose in
the upper left menu of the Results List toolbar.

Filter Using Results List

For the other filtering mechanisms, use filters on the Results List pane itself. To clear
filters from the Results List pane, use the button Clear active filters in the Showing
dropdown.

5-5

5 View Results in the Polyspace Environment

• To filter results from the Results List pane, click the icon on the appropriate
column. Clear All. Select the boxes for the results that you want displayed.

Item to Filter Column

Results in a certain file or function File or Function
Defects of a certain type, for instance,
Integer division by zero

Check

The column does not appear if you group
checks by family. See “Group Results” on
page 5-7.

Results with a certain severity or status Severity or Status
Results in a certain group such as
numerical or data flow

Group

Results with a certain impact Information
Results that correspond to certain CWE
IDs.

CWE ID

For more information, see “Find CWE
Identifiers from Defects” on page 5-64.

• To review only new results found since the last , on the Results List pane, select

.
• To suppress code metrics from your results, from the drop-down list in the left of the

Results List pane toolbar, select Defects & Rules.

You can increase the options on this list or create your own options. For examples,
see:

• “Suppress Certain Rules from Display in One Click” on page 3-18
• “Limit Display of Defects” on page 5-16

5-6

 Filter and Group Results

• “Review Code Metrics” on page 5-33

Note: You can also apply multiple filters. Once you apply a set of filters to your results,
they are preserved for subsequent runs on the same project module. The Results List
pane shows the number of results filtered from display. If you place your cursor on the
number, you can see which filters have been applied.

Group Results

On the Results List pane, from the list, select an appropriate option.

• To show results without grouping, select None.
• To show results grouped by result type, select Family.

• The defects are organized by the defect groups. For more information on the
groups, see “Defects”.

• The coding rule violations are grouped by type of coding rule. For more
information, see “Coding Rules”.

• The code metrics are grouped by scope of metric. For more information, see “Code
Metrics”.

• To show results grouped by file, select File.

Within each file, the results are grouped by function. The results that are not
associated with a particular function are grouped under File Scope.

• For C++ code, to show results grouped by class, select Class. The results that are not
associated with a particular class are grouped under Global Scope.

Within each class, the results are grouped by method.

Related Examples
• “Review and Fix Results” on page 5-30

More About
• “Windows Used to Review Results” on page 5-41

5-7

5 View Results in the Polyspace Environment

Classification of Defects by Impact

To prioritize your review of Polyspace Bug Finder defects, you can use the Impact
attribute assigned to the defect. This attribute appears on:

• The Dashboard pane, in a Defect distribution by impact pie chart.

You can view at a glance whether you have many high impact defects. You can also
select elements on the chart to filter out low or medium impact defects from the
Results List pane. See “Filter and Group Results” on page 5-4.

• The Results List pane, in the Information column. When you select None from the
 list, the defects are sorted by impact.

You can filter out low and/or medium impact defects using this column or through the
Review Scope tab in your preferences. See “Filter and Group Results” on page 5-4.

• The Result Details pane, beside the defect name.

The impact is assigned to a defect based on the following considerations:

• Criticality, or whether the defect is likely to cause a code failure.

If a defect is likely to cause a code to fail, it is treated as a high impact defect. If
the defect currently does not cause code failure but can cause problems with code
maintenance in the future, it is a low impact defect.

• Certainty, or the rate of false positives.

For instance, the defect Integer division by zero is a high-impact defect because it is
almost certain to cause a code crash. On the other hand, the defect Dead code has low
impact because by itself, presence of dead code does not cause code failure. However, the
dead code can hide other high-impact defects.

You cannot change the impact assigned to a defect.

High Impact Defects

The following list shows the high-impact defects.

Numerical

• Float conversion overflow

5-8

 Classification of Defects by Impact

• Float division by zero
• Integer conversion overflow
• Integer division by zero
• Invalid use of standard library floating point routine
• Invalid use of standard library integer routine

Static memory

• Array access out of bounds
• Buffer overflow from incorrect string format specifier
• Destination buffer overflow in string manipulation
• Destination buffer underflow in string manipulation
• Invalid use of standard library memory routine
• Invalid use of standard library string routine
• Null pointer
• Pointer access out of bounds
• Pointer or reference to stack variable leaving scope
• Use of path manipulation function without maximum sized buffer checking
• Wrong allocated object size for cast

Dynamic memory

• Deallocation of previously deallocated pointer
• Invalid free of pointer
• Use of previously freed pointer

Data flow

• Non-initialized pointer
• Non-initialized variable

Resource management

• Closing a previously closed resource
• Resource leak

5-9

5 View Results in the Polyspace Environment

• Use of previously closed resource
• Writing to read-only resource

Programming

• Assertion
• Declaration mismatch
• Invalid use of == operator
• Invalid use of floating point operation
• Invalid use of standard library routine
• Invalid va_list argument
• Possible misuse of sizeof
• Possibly unintended evaluation of expression because of operator precedence rules
• Variable length array with nonpositive size
• Writing to const qualified object
• Wrong type used in sizeof

Concurrency

• Data race
• Data race through standard library function call
• Deadlock
• Double lock
• Double unlock
• Missing unlock

Security

• Use of non-secure temporary file

Object Oriented

• Base class assignment operator not called
• Copy constructor not called in initialization list
• Object slicing

5-10

 Classification of Defects by Impact

Medium Impact Defects

The following list shows the medium-impact defects.

Numerical

• Absorption of float operand
• Integer overflow
• Sign change integer conversion overflow

Static memory

• Unreliable cast of function pointer
• Unreliable cast of pointer

Dynamic memory

• Memory leak

Data flow

• Pointer to non-initialized value converted to const pointer
• Unreachable code
• Useless if

Programming

• Bad file access mode or status
• Copy of overlapping memory
• Exception caught by value
• Exception handler hidden by previous handler
• Improper array initialization
• Incorrect pointer scaling
• Invalid assumptions about memory organization
• Invalid use of = operator
• Overlapping assignment
• Standard function call with incorrect arguments

5-11

5 View Results in the Polyspace Environment

• Use of memset with size argument zero

Concurrency

• Data race including atomic operations
• Destruction of locked mutex
• Missing lock

Security

• Deterministic random output from constant seed
• Execution of a binary from a relative path can be controlled by an external actor
• File access between time of check and use (TOCTOU)
• File manipulation after chroot() without chdir(“/”)
• Incorrect order of network connection operations
• Load of library from a relative path can be controlled by an external actor
• Mismatch between data length and size
• Predictable random output from predictable seed
• Sensitive data printed out
• Sensitive heap memory not cleared before release
• Uncleared sensitive data in stack
• Unsafe standard encryption function
• Unsafe standard function
• Vulnerable permission assignments
• Vulnerable pseudo-random number generator

Tainted data

• Array access with tainted index
• Command executed from externally controlled path
• Execution of externally controlled command
• Host change using externally controlled elements
• Library loaded from externally controlled path
• Loop bounded with tainted value

5-12

 Classification of Defects by Impact

• Memory allocation with tainted size
• Tainted sign change conversion
• Tainted size of variable length array
• Use of externally controlled environment variable

Object Oriented

• Base class destructor not virtual
• Incompatible types prevent overriding
• Member not initialized in constructor
• Missing virtual inheritance
• Partial override of overloaded virtual functions
• Return of non const handle to encapsulated data member
• Self assignment not tested in operator

Low Impact Defects

The following list shows the low-impact defects.

Numerical

• Float overflow
• Shift of a negative value
• Shift operation overflow
• Unsigned integer conversion overflow
• Unsigned integer overflow

Static memory

• Arithmetic operation with NULL pointer

Dynamic memory

• Unprotected dynamic memory allocation

Data flow

• Code deactivated by constant false condition

5-13

5 View Results in the Polyspace Environment

• Dead code
• Missing return statement
• Partially accessed array
• Static uncalled function
• Variable shadowing
• Write without a further read

Programming

• Format string specifiers and arguments mismatch
• Call to memset with unintended value
• Missing null in string array
• Modification of internal buffer returned from nonreentrant standard function
• Qualifier removed in conversion

Security

• Missing case for switch condition
• Umask used with chmod-style arguments
• Use of dangerous standard function
• Vulnerable path manipulation
• Function pointer assigned with absolute address
• Use of obsolete standard function

Tainted data

• Pointer dereference with tainted offset
• Tainted division operand
• Tainted NULL or non-null-terminated string
• Tainted modulo operand
• Tainted string format
• Use of tainted pointer

Good practice

• Delete of void pointer

5-14

 Classification of Defects by Impact

• Hard-coded buffer size
• Hard-coded loop boundary
• Large pass-by-value argument
• Line with more than one statement
• Unused parameter
• Use of setjmp/longjmp

Object Oriented

• *this not returned in copy assignment operator
• Missing explicit keyword

5-15

5 View Results in the Polyspace Environment

Limit Display of Defects

This example shows how to control the number and type of defects displayed on the
Results List pane. To reduce your review effort, you can limit the number of defects to
display for certain checks or suppress them altogether.

To prevent the analysis from looking for some defects, see “Choose Specific Defects” on
page 4-2.

If you do not want to change your analysis configuration, you can still change which
defects are displayed in your results. There are two ways to filter defects from your
results:

• Filter individual defects from display after each run.

For more information, see “Filter and Group Results” on page 5-4.
• Create a set of filters that you can apply in one click.

This example shows the second approach.

1 Select Tools > Preferences.
2 On the Review Scope tab, create your filter file.

a Select New. Save your filter file.
b On the left pane, select Defect. On the right pane, to suppress a defect

completely, clear the box for the defect. To suppress a defect partly, specify a
percentage less than 100 to display.

Instead of a percentage, you can specify a number or the string ALL. To specify a
number, clear the box Specify percentage of checks.

To suppress all defects belonging to a category such as Numerical, clear the box
next to the category name. For more information on the categories, see “Defects”.
If only a fraction of defects in a category are selected, the check box next to the
category name displays a symbol.

To suppress all defects with a certain impact such as Low, clear the box next
to the impact. For more information on impacts, see “Classification of Defects
by Impact” on page 5-8. If only a fraction of defects with a certain impact are
selected, the check box next to the impact displays a symbol.

5-16

 Limit Display of Defects

3 Select Apply or OK.

On the Results List pane, the Show menu displays additional options.
4 Select the option corresponding to the filters that you want. Only the number or

percentage of defects that you specify remain on the Results List pane.

• If you specify an absolute number, Polyspace displays that number of defects.
• If you specify a percentage, Polyspace displays that percentage of the total

number of defects.

5-17

5 View Results in the Polyspace Environment

Generate Reports

This example shows how to generate reports from Polyspace Bug Finder analysis results.

To generate reports, you can do one of the following:

• Run a Polyspace Bug Finder analysis and create a report from the analysis results.
See the workflow described here.

• Specify that a report will be automatically generated after analysis. For more
information on the options, see “Reporting”.

• Export your results to a text file and generate graphs and statistics. See “Export
Results to Text File” on page 5-21

Depending on the template you use, the report contains information about certain types
of results from the Results List pane. You can see the following information about a
result:

• ID: Unique number for a result for the current analysis

To identify the result in your source code, you can use the ID in the Results List
pane of the Polyspace user interface or in your IDE if you are using a Polyspace
plugin.

• Check: Defect names, MISRA C:2012 coding rule number, and so on.
• File and function
• Status, Severity, Comment: Information that you enter about a result.

The report does not contain the line or column number for a result. Use the report for
archiving, gathering statistics and checking whether results have been reviewed and
addressed (for certification purposes or otherwise). To review a result in your source code,
use the Polyspace user interface or your IDE if you are using a Polyspace plugin.

Generate Reports from User Interface

You can generate a report from your analysis results. Using a customizable template,
the report presents your results in a concise manner for managerial review or other
purposes.

1 Open your results file.

5-18

 Generate Reports

2 Select Reporting > Run Report.

The Run Report dialog box opens.

3 Select the following options:

• In the Select Reports section, select the types of reports that you want to
generate. Press the Ctrl key to select multiple types. For example, you can select
BugFinder and CodeMetrics.

• Select the Output folder in which to save the report.
• Select an Output format for the report.
• If the display language (Windows) or locale (Linux) of your operating system is

set to another language, you see an option to generate English reports. Select this
option if you want an English report, otherwise the report is in another language.

• If you want to filter results from your report, use filters on the Results List
pane to display only the results that you want to report. Then, when generating
reports, select Only include currently displayed results.

For more information on filtering, see “Filter and Group Results” on page 5-4.
4 Click Run Report.

5-19

5 View Results in the Polyspace Environment

The software creates the specified report and opens it.

Generate Reports from Command Line

You can script the generation of reports using the polyspace-report-generator
command.

Use the following options with the command:

• -template path: Path to report template file. For more information, see Report
template (-report-template).

The predefined report templates are in matlabroot\toolbox\polyspace
\psrptgen\templates\Developer.rpt. Here, matlabroot is the MATLAB®

installation folder such as C:\Program Files\MATLAB\R2015a.
• -format type: Output format of report. The allowed types areHTML, PDF and WORD.
• -output-name filename: Name of report.
• -results-dir folder_paths: Path to folder containing your analysis results.

To generate a single report for multiple analyses, specify folder_paths as follows:

"folder1, folder2, ..., folderN"

where folder1, folder2, ... are paths to the folders that contain analysis
results. For example,

"C:\Recent_project\Results,C:\Old_project\Results"

If you do not specify a folder path, the software uses analysis results from the current
folder.

• -set-language-english: Use this option to generate English reports if the default
report is in another language. The display language (Windows) or locale (Linux) of
your operating system determines the default language in the report.

See Also
Generate report | Report template (-report-template) | Output format (-report-output-
format)

5-20

 Export Results to Text File

Export Results to Text File

You can export your analysis results to a tab delimited text file. Using the text file, you
can:

• Generate graphs or statistics about your results that you cannot readily obtain from
the user interface by using MATLAB or Microsoft Excel®. For instance, for each check
type (Division by zero, Overflow), you can calculate how many checks are red,
orange, or green.

• Integrate the analysis results with other checks you perform on your code.

Export Results

You can export results from the user interface or command line.

User Interface Command Line

1 Open your analysis results.
2 Export all results or only a subset of

the results.

• To export all results, select
Reporting > Export > Export All
Results.

• If you want to filter results from
your report, use filters on the
Results List pane to display only
the results that you want to report.
Then, when exporting results, select
Reporting > Export > Export
Currently Displayed Results.

For more information on filtering,
see “Filter and Group Results” on
page 5-4.

3 Select a location to save the text file
and click OK.

Use appropriate options with the
polyspace-report-generator

command.

The available options are:

• -generate-results-list-file:
Specifies that a text file must be
generated.

• -results-dir folder_paths: Path
to folder containing your analysis
results. If you do not specify a folder
path, the software uses analysis results
from the current folder.

To generate text files for multiple
analyses, specify folder_paths as
follows:

"folder1, folder2, ..., folderN"

folder1, folder2, ... are paths to
the folders that contain analysis results.
For example:

5-21

5 View Results in the Polyspace Environment

User Interface Command Line

"C:\My_project

\Module_1\results, C:

\My_project\Module_2\Results"

To merge the text files, use the join
function.

The exported text file uses the character encoding on your operating system. If special
characters from your comments are not exported correctly in the text file, change the
character encoding on your operating system before exporting.

View Exported Results

The text file contains the result information available on the Results List pane in the
user interface (except for line and column information). Some of the result information
includes:

• ID: Unique number for a result for the current analysis
• Family: Defect, Code Metric, MISRA C:2012, and so on.
• Group: Defect groups, MISRA C:2012 groups, etc.
• Check: Defect names, MISRA C:2012 coding rule number, and so on.
• New: Whether the result is new compared to the last analysis on the same code
• Full path to file
• Function
• Status, Severity, Comment: Information that you enter about a result.

For more information, see “Results List” on page 5-45. Though you cannot identify
the location of a result in your source code via the text file, you can parse the file and
generate graphs or statistics about your results.

The text file also contains a Key column. The entry in this column is unique to a result
across multiple analyses. When you merge multiple analysis results that might contain
common files, use this entry to eliminate copies of a result. For instance, if you run
coding-rule checking on multiple modules and merge the results, header files and coding
rule violations in them appear in multiple module results. To eliminate copies of a coding
rule violation, use the entry in the Key column.

5-22

 Export Results to Text File

Generate Graphs from Results

This example shows how to create a pie chart showing the distribution of defects
by defect groups on page 5-55. The text file with the results has the name
Result_List.txt.

% Read contents of text file into a table

resultsList = readtable('Result_List.txt', 'Delimiter', '\t');

% Eliminate results that are not defects

defectList = resultsList(ismember(resultsList.Family, {'Defect'}),:);

% Create a pie chart showing distribution of defects

pie(categorical(defectList.Group))

The key functions used in the example are:

• readtable: Create table from file.
• pie: Create pie chart from a categorical array.

When you execute the script, you see a distribution of defects by defect group.

5-23

5 View Results in the Polyspace Environment

5-24

 Customize Existing Report Template

Customize Existing Report Template

In this example, you learn how to customize an existing report template to suit
your requirements. A report template allows you to generate a report from your
analysis results in a specific format. If an existing report template does not suit your
requirements, you can change certain aspects of the template.

For more information on the existing templates, see Report template (-report-template).

Prerequisites

Before you customize a report template:

• See whether an existing report template meets your requirements. Identify the
template that produces reports in a format close to what you need. You can adapt this
template.

To test a template, generate a report from sample results using the template. See
“Generate Reports” on page 5-18.

• Make sure you have MATLAB Report Generator™ installed on your system.

In this example, you modify the BugFinder template that is available in Polyspace Bug
Finder.

View Components of Template

A report template can be broken into components in MATLAB Report Generator. Each
component represents some of the information that is included in a report generated
using the template. For example, the component Title Page represents the information
in the title page of the report.

In this example, you view the components of the BugFinder template.

1 Open the Report Explorer interface of Simulink® Report Generator. At the MATLAB
command prompt, enter:

report

2 Open the BugFinder template in the Report Explorer interface.

5-25

5 View Results in the Polyspace Environment

The BugFinder template is in matlabroot/toolbox/polyspace/psrptgen/
templates/bug_finder where matlabroot is the MATLAB installation folder.
Run matlabroot in MATLAB to find the installation folder location.

Your template opens in the Report Explorer. On the left pane, you can see the
components of the template. You can click each component and view the component
properties on the right pane.

Some components of the BugFinder template and their purpose are described below.

Component Purpose

Title Page Inserts title page in the beginning of report
Chapter/Subsection Groups portions of report into sections with titles
Code Verification
Summary

Inserts summary table of Polyspace analysis results

Logical If Executes child components only if a condition is satisfied
Run-time Checks
Summary Ordered
by File

Inserts a table with Polyspace Bug Finder defects grouped by file

To understand how the template works, compare the components in the template with a
report generated using the template.

For more information on the components, see “Create Reports Interactively”. For
information on Polyspace-specific components, see “View Results”.

Note: Some of the component properties are set using internal expressions. Although
you can view the expressions, do not change them. For instance, the conditions specified

5-26

 Customize Existing Report Template

in the Logical If components in the BugFinder template are specified using internal
expressions.

Change Components of Template

In the Report Explorer interface, you can:

• Change properties of existing components of your template.
• Add new components to your template or remove existing components.

In this example, you add a component to the BugFinder template so that the template
includes only Integer division by zero and Float division by zero defects in a report.

1 Open the BugFinder template in the Report Explorer interface and save it
elsewhere with a different name, for instance, BugFinder_Division_by_Zero.

2 Add a new global component that filters every defect except division by zero from
the BugFinder_Division_by_Zero template. The component is global because it
applies to the full report and not one chapter of the report.

To perform this action:

a Drag the component Report Customization (Filtering) from the middle pane
and drop it above the Title Page component. The positioning of the component
ensures that the filters apply to the full report and not one chapter of the report.

5-27

5 View Results in the Polyspace Environment

b Select the Report Customization (Filtering) component. On the right pane,
you can set the properties of this component. By default, the properties are set
such that all results are included in the report.

To include only Integer division by zero and Float division by zero defects,
under the Advanced Filters group, enter Integer division by zero and
Float division by zero in the Check types to include field.

You can also use MATLAB regular expressions in this field to exclude defects.
See “Regular Expressions”.

You can toggle between activating and deactivating this component. Right-click
the component and select Activate/Deactivate Component.

3 Change an existing chapter-specific component so that it does not override the global
filter you applied in the previous step. If you prevent the overriding, the chapter-
specific component follows the filtering specifications in the global component.

To perform this action:

a On the left pane, select the Run-time Checks Details Ordered by Color/File
component. This component produces tables in the report with details of run-
time checks found in Polyspace Bug Finder.

The right pane shows the properties of this component.

5-28

 Customize Existing Report Template

b Clear the Override Global Report filter box.

4 In the Polyspace user interface, create a report using both the BugFinder and
BugFinder_Division_by_Zero template from results containing division by zero
defects. Compare the two reports.

For instance:

a Open Help > Examples > Bug_Finder_Example.psprj.

The demo result contains Integer division by zero and Float division by
zero defects.

b Create a PDF report using the BugFinder template. See “Generate Reports” on
page 5-18.

In the report, open Chapter 5. Defects. You can see all defects from the example
result. Close the report.

c Create a PDF report using the BugFinder_Division_by_Zero
template. In the Run Report window, use the Browse button to add the
BugFinder_Division_by_Zero template to the existing template list.

In the report, open Chapter 5. Defects. You see only Integer division by zero
and Float division by zero defects.

5-29

5 View Results in the Polyspace Environment

Review and Fix Results

This example shows how to review and comment your Bug Finder results. When
reviewing results, you can assign a status to the defects and enter comments to describe
the results of your review. These actions help you to track the progress of your review
and avoid reviewing the same defect twice.

In this section...

“Assign and Save Comments” on page 5-30
“Import Review Comments from Previous Analysis” on page 5-31

Assign and Save Comments

1 On the Results List pane, select the defect that you want to review.

The Result Details pane displays information about the current defect.

2 Investigate the result further. Determine whether to fix your code, review the result
later, or retain the code but provide some explanation.

3 On the Results List or Result Details pane, provide the following review
information for the result:

• Severity to describe how critical you consider the issue.
• Status to describe how you intend to address the issue.

5-30

 Review and Fix Results

You can also create your own status or associate justification with an existing
status. Select Tools > Preferences and create or modify statuses on the Review
Statuses tab.

• Comment to describe any other information about the result.
4 To provide review information for several results together, select the results. Then,

provide review information for a single result.

To select the results in a group:

• If the results are contiguous, left-click the first result. Then Shift-left click the
last result.

To group certain results together, use the column headers on the Results List
pane.

• If the results are not contiguous, Ctrl-left click each result.
• If the results belong to the same group and have the same color, right-click one

result. From the context menu, select Select All Type Results.

For instance, select Select All "Memory leak" Results.
5 To save your review comments, select File > Save. Your comments are saved with

the analysis results.

Import Review Comments from Previous Analysis

After you have reviewed analysis results, you can reuse your review comments for
subsequent analyses. By default, Polyspace Bug Finder imports comments from the last
on the module.

Import Comments from Another Analysis

1 Open your results.
2 Select Tools > Import Comments.
3 Navigate to the folder containing your previous results.
4 Select the results file and then click Open.

The review comments from the previous results are imported into the current
results, and the Import checks and comments report opens showing the comments
that do not apply to the current analysis.

5-31

5 View Results in the Polyspace Environment

Disable Automatic Comment Import from Last Analysis

1 Select Tools > Preferences, which opens the Polyspace Preferences dialog box.
2 Select the Project and Results Folder tab.
3 Under Import Comments, clear Automatically import comments from last .
4 Click OK.

After you set this preference, for every run, the software imports review comments
from the last run.

Related Examples
• “Filter and Group Results” on page 5-4
• “Add Annotations from the Polyspace Interface” on page 1-44

More About
• “Windows Used to Review Results” on page 5-41

5-32

 Review Code Metrics

Review Code Metrics

This example shows how to review the code complexity metrics that Polyspace computes.
For information on the individual metrics, see “Code Metrics”.

Polyspace does not compute code complexity metrics by default. To compute them during
analysis, do the following:

• User interface: On the Configuration pane, select Coding Rules & Code
Metrics. Select Calculate Code Metrics.

• Command line: With the polyspace-bug-finder-nodesktop or
polyspaceBugFinder command, use the option -code-metrics .

After analysis, the software displays code complexity metrics on the Results List pane.
You can:

• Specify limits for the metric values through Tools > Preferences.

If you impose limits on metrics, the Results List pane displays only those metric
values that violate the limits. Use predefined limits or assign your own limits. If you
assign your own limits, you can share the limits file to enforce coding standards in
your organization.

• Justify the value of a metric.

If a metric value exceeds specified limits and appears red, you can add a comment
with the rationale.

You can also suppress code metrics from the Results List display. Select Show >
Defects & Rules.

In this section...

“Impose Limits on Metrics” on page 5-33
“Comment and Justify Limit Violations” on page 5-36

Impose Limits on Metrics

1 Select Tools > Preferences.
2 On the Review Scope tab, do one of the following:

• To use a predefined limit, select Include Quality Objectives Scopes.

5-33

5 View Results in the Polyspace Environment

The Scope Name list shows the additional option HIS. The option HIS displays
the HIS code metrics on page 5-60 only. Select the option to see the limit
values.

• To define your own limits, select New. Save your limits file.

On the left pane, select Code Metric. On the right, select a metric and specify a
limit value for the metric. Other than Comment Density, limit values are upper
limits.

To select all metrics in a category such as Function Metrics, select the box next
to the category name. For more information on the metrics categories, see “Code
Metrics”. If only a fraction of metrics in a category are selected, the check box
next to the category name displays a symbol.

5-34

 Review Code Metrics

3 Select Apply or OK.

The drop-down list in the left of the Results List pane toolbar displays additional
options.

5-35

5 View Results in the Polyspace Environment

• If you use predefined limits, the option HIS appears. This option displays code
metrics only.

• If you define your own limits, the option corresponding to your limits file name
appears.

4 Select the option corresponding to the limits that you want. Only metric values that
violate your limits appear on the Results List pane.

Note: To enforce coding standards across your organization, share your limits file that
you saved in XML format.

People in your organization can use the Open button on the Review Scope tab and
navigate to the location of the XML file.

Comment and Justify Limit Violations

Once you use the Show menu to display only metrics that violate limits, you can review
each violation.

1 On the Results List pane, from the list, select Family.

The code metrics appear together under one node.
2 Expand the node. Select each violation.

• On the Results List pane, in the Information column, you can see the metric
value.

• On the Result Details pane, you can see the metric value and a brief description
of the metric.

For more detailed descriptions and examples, select the icon.
3 On the Results List pane, add a comment and justification describing why the

violation occurs. For more information, see “Review and Fix Results” on page 5-30.

5-36

 Navigate to Root Cause of Defect

Navigate to Root Cause of Defect

Through the Polyspace Bug Finder user interface, you can navigate to the root cause of
a defect in your source code. If you select a result on the Results List pane, you see the
immediate location of the defect on the Source pane. However, the defect can be related
to previous statements in your source code.

For instance, a Non-initialized variable defect appears at the location where you
read a noninitialized variable. However, it is possible that you initialized the variable
previously. For instance, the initialization occurred in a branch of a previous if
statement and the variable is noninitialized only if that branch is not entered.

Follow Code Sequence Causing Defect

Often, the Result Details pane shows the events related to the defect. To see the code
statement that the event describes, click the event.

For instance, if an Array Access Out of Bounds error occurs in a loop, the Result
Details pane shows updates to the array index that occur inside the loop. The update
statements might physically occur in your code before or after the array access, but
because the statements occur in a loop, they are related to the array access.

On the Source pane, the statements are highlighted in blue and the corresponding line
numbers outlined in boxes.

5-37

5 View Results in the Polyspace Environment

On the Result Details pane, you can select the Variable trace box, if available. The
event sequence expands to show more events related to the defect. The statements that
the additional events describe are highlighted in light blue on the Source pane.

Navigate to Identifier Definition

Often, to diagnose a defect, you have to navigate to an identifier definition. On the
Source pane, right-click the identifier name. Select Go To Definition.

For instance, the C++ defect Object slicing appears at the location where you pass
a derived class object by value to a function. The function expects a base class object
as parameter. To diagnose this defect, you can navigate to the base and derived class
definitions.

To navigate to the derived class definition starting from the defect location:

1 Right-click the derived class object name and select Go To Definition.
2 In the derived class object definition, right-click the derived class name and select

Go To Definition.

If a definition is not available to Polyspace, selecting the option takes you to the
declaration. For instance, Polyspace Bug Finder displays results in real time as they are
produced. The software displays results on some files while others are not yet analyzed.
In your results, if you select a function and then select Go To Definition, and the
function definition is not yet analyzed, selecting the option takes you to the function
declaration.

Navigate to Identifier References

Often, to diagnose a defect, you have to see the locations where an identifier is used.

For instance, an if statement shows the Dead code defect. You want to understand
why the variable that controls entry to the if statement has a certain set of values.
Therefore, you want to see previous assignments to that variable.

To navigate to previous locations where an identifier is used:

1 Right-click the identifier name and select Search For All References.

The search results appear on the Search pane with the current location highlighted.

5-38

 Navigate to Root Cause of Defect

2 Click each search result, starting backward from the highlighted result.
3 The option Search for All References is not available in some cases. For instance,

if you right-click a C++ virtual function, this option is not available.

Use one of the following options to search for occurrences of the identifier name:

• Search For Identifier_name in Current Source File
• Search For Identifier_name in All Source Files

4 If reviewing a defect requires deeper navigation in your source code, you can create
a duplicate source code window that focuses on the defect while you navigate in the
original source code window.

a Right-click on the Source pane and select Create Duplicate Code Window.
b Right-click on the tab showing the duplicate file name and select New Vertical

Group.
c Perform the navigation steps in the original file window while the defect still

appears on the duplicate file window.
d

After reviewing the defect, click the button on the Results List pane to
return to the defect location in the original file window. Close the duplicate
window.

Related Examples
• “Review and Fix Results” on page 5-30

More About
• “Source” on page 5-47
• “Result Details” on page 5-53

5-39

5 View Results in the Polyspace Environment

Results Folder Contents

Every time you run an analysis, Polyspace generates files and folders that contain
information about configuration options and analysis results. The contents of results
folders depend on the configuration options and how the analysis was started.

By default, your results are saved in your project folder in a folder called Result. To use
a different folder, see “Specify Results Folder” on page 4-6.

Files in the Results Folder

Some of the files and folders in the results folder are described below:

• Polyspace_release_project_name_date-time.log — A log file associated with
each analysis.

• ps_results.psbf — An encrypted file containing your Polyspace results. Open this
file in the Polyspace environment to view your results.

• ps_sources.db — A non-encrypted database file listing source files and macros.
• drs-template.xml — A template generated when you use constraint specification.
• ps_comments.db — An encrypted database file containing your comments and

justifications.
• comments_bak — A subfolder used to import comments between results.
• .status and .settings — Two folders that store files required to relaunch the

analysis. You relaunch the analysis using a .bat file in Windows and a .sh file in
Linux.

• Polyspace-Doc — When you generate a report, by default, your report is saved in
this folder with the name ProjectName_ReportType. For example, a developer
report in PDF format would be, myProject_Developer.pdf.

See Also
-results-dir

Related Examples
• “Specify Results Folder” on page 4-6
• “Open Results” on page 5-2

5-40

 Windows Used to Review Results

Windows Used to Review Results

In this section...

“Dashboard” on page 5-41
“Results List” on page 5-45
“Source” on page 5-47
“Result Details” on page 5-53

Dashboard

The Dashboard pane provides statistics on the analysis results in a graphical format.

When you open a results file in Polyspace, this pane is displayed by default. You can view
the following graphs:

• Code covered by analysis

From this graph you can obtain the following information:

• # Files analyzed: Ratio of analyzed files to total number of files. If a file contains
a compilation error, Polyspace Bug Finder does not analyze the file.

If some of your files were only partially analyzed because of compilation errors,
this pane contains a link stating that some files failed to compile. To see the
compilation errors, click the link and navigate to the Output Summary pane.

5-41

5 View Results in the Polyspace Environment

• # Functions analyzed: Ratio of analyzed functions to total number of functions
in the analyzed files. If the analysis of a function takes longer than a certain
threshold value, Polyspace Bug Finder does not analyze the function.

• Defect distribution by impact

From this pie chart, you can obtain a graphical visualization of the defect distribution
by impact. You can find at a glance whether the defects that Polyspace Bug Finder
found in your code are low-impact defects. For more information on impact, see
“Classification of Defects by Impact” on page 5-8.

• Defect distribution by category or file

From this graph you can obtain the following information.

 Category File

Top 10 The ten defect types with the highest
number of individual defects.

The ten source files with the highest
number of defects.

5-42

 Windows Used to Review Results

 Category File

• Each column represents a defect
type and is divided into the:

• File with highest number of
defects of this type.

• File with second highest number
of defects of this type.

• All other files with defects of this
type.

Place your cursor on a column to see
the file name and number of defects
of this type in this file.

• The x-axis represents the number of
defects.

Use this view to organize your check
review starting at defect types with
more individual defects.

• Each column represents a file and is
divided into the:

• Defect type with highest number
of defects in this file.

• Defect type with second highest
number of defects in this file.

• All other defect types in this file.

Place your cursor on a column to see
the defect type name and number of
defects of this type in this file.

• The x-axis represents the number of
defects.

Use this view to organize your check
review starting at files with more
defects.

Bottom 10 The ten defect types with the lowest
number of individual defects. Each
column on the graph is divided the
same way as the Top 10 defect types.

Use this view to organize your check
review starting at defect types with
fewer individual defects.

The ten source files with the lowest
number of defects. Each column on the
graph is divided the same way as the
Top 10 files.

Use this view to organize your check
review starting at files with fewer
defects.

• Coding rule violations by rule or file

5-43

5 View Results in the Polyspace Environment

For every type of coding rule that you check (MISRA, JSF, or custom), the
Dashboard contains a graph of the rule violations.

From this graph you can obtain the following information.

 Category File

Top 10 The ten rules with the highest number
of violations.

• Each column represents a rule
number and is divided into the:

• File with highest number of
violations of this rule.

• File with second highest number
of violations of this rule.

• All other files with violations of
this rule.

Place your cursor on a column to
see the file name and number of
violations of this rule in the file.

• The x-axis represents the number of
rule violations.

Use this view to organize your review
starting at rules with more violations.

The ten source files containing the
highest number of violations.

• Each column represents a file and is
divided into the:

• Rule with highest number of
violations in this file.

• Rule with second highest number
of violations in this file.

• All other rules violated in this
file.

Place your cursor on a column to
see the rule number and number of
violations of the rule in this file.

• The x-axis represents the number of
rule violations.

Use this view to organize your review
starting at files with more rule
violations.

Bottom 10 The ten rules with the lowest number
of violations. Each column on the graph
is divided in the same way as the Top
10 rules.

Use this view to organize your review
starting at rules with fewer violations.

The ten source files containing the
lowest number of rule violations. Each
column on the graph is divided in the
same way as the Top 10 files.

Use this view to organize your review
starting at files with fewer rule
violations.

5-44

 Windows Used to Review Results

For a list of supported coding rules, see “Supported MISRA C:2004 and MISRA AC
AGC Rules” on page 2-14, “Supported MISRA C++ Coding Rules” on page 2-88 and
“Supported JSF C++ Coding Rules” on page 2-117.

You can also perform the following actions on this pane:

• Select elements on the graphs to filter results from the Results List pane. See “Filter
and Group Results” on page 5-4.

• View the configuration used to obtain the result. Select the link View configuration
for results.

Results List

The Results List pane lists all results along with their attributes. To organize your
results review, from the list on this pane, select one of the following options:

• None: Lists defects and coding rule violations without grouping. By default the
results are listed in order of severity.

• Family: Lists results grouped by grouping. For more information on the defects
covered by a group, see “Bug Finder Defect Groups” on page 5-55.

• Class: Lists results grouped by class. Within each class, the results are grouped
by method. The first group, Global Scope, lists results not occurring in a class
definition.

This option is available for C++ code only.
• File: Lists results grouped by file. Within each file, the results are grouped by

function.

For each result, the Results List pane contains the result attributes, listed in columns:

Attribute Description

Family Group to which the result belongs.
ID Unique identification number of the result.

In the default view on the Results List
pane, the results appear sorted by this
number.

Type Defect or coding rule violation.

5-45

5 View Results in the Polyspace Environment

Attribute Description

Group Category of the result, for instance:

• For defects: Groups such as static
memory, numerical, control flow,
concurrency, etc.

• For coding rule violations: Groups
defined by the coding rule standard.

For instance, MISRA C: 2012 defines
groups related to code constructs such
as functions, pointers and arrays, etc.

The column appears only if you select
None or File from the list.

Check Result name, for instance:

• For defects: Defect name
• For coding rule violations: Coding rule

number.
File File containing the instruction where the

result occurs
Class Class containing the instruction where the

result occurs. If the result is not inside a
class definition, then this column contains
the entry, Global Scope.

Function Function containing the instruction where
the result occurs. If the function is a
method of a class, it appears in the format
class_name::function_name.

5-46

 Windows Used to Review Results

Attribute Description

Severity Level of severity you have assigned to the
result. The possible levels are:

• High

• Medium

• Low

• Not a defect

Status Review status you have assigned to the
result. The possible statuses are:

• Fix

• Improve

• Investigate

• Justified

• No action planned

• Other

Comments Comments you have entered about the
result

To show or hide any of the columns, right-click anywhere on the column titles. From the
context menu, select or clear the title of the column that you want to show or hide.

Using this pane, you can:

• Navigate through the results. For more information, see “Review and Fix Results” on
page 5-30.

• Organize your result review using filters on the columns. For more information, see
“Filter and Group Results” on page 5-4.

Source

The Source pane shows the source code with the defects colored in red and the
corresponding line number marked by .

5-47

5 View Results in the Polyspace Environment

Tooltips

Placing your cursor over a result displays a tooltip that provides range information for
variables, operands, function parameters, and return values.

Examine Source Code

On the Source pane, if you right-click a text string, the context menu provides options to
examine your code:

5-48

 Windows Used to Review Results

For example, if you right-click the variable i, you can use the following options to
examine and navigate through your code:

• Search "i" in Current Source — List occurrences of the string within the current
source file on the Search pane.

• Search "i" in All Source Files — List occurrences of the string within the source
files on the Search pane.

• Search For All References — List all references in the Search pane. The software
supports this feature for global and local variables, functions, types, and classes.

• Go To Definition — Go to the line of code that contains the definition of i. The
software supports this feature for global and local variables, functions, types, and
classes. If a definition is not available to Polyspace, selecting the option takes you to
the declaration.

• Go To Line — Open the Go to line dialog box. If you specify a line number and click
Enter, the software displays the specified line of code.

5-49

5 View Results in the Polyspace Environment

• Expand All Macros or Collapse All Macros — Display or hide the content of
macros in current source file.

Expand Macros

You can view the contents of source code macros in the source code view. A code
information bar displays icons that identify source code lines with macros.

When you click a line with this icon, the software displays the contents of macros on that
line in a box.

5-50

 Windows Used to Review Results

To display the normal source code again, click the line away from the box, for example,
on the icon.

To display or hide the content of all macros:

1 Right-click anywhere on the source.
2 From the context menu, select either Expand All Macros or Collapse All Macros.

Note: The Result Details pane also allows you to view the contents of a macro if the
result you select lies within a macro.

Manage Multiple Files in Source Pane

You can view multiple source files in the Source pane.

Right-click on the Source pane toolbar.

5-51

5 View Results in the Polyspace Environment

From the Source pane context menu, you can:

• Close – Close the currently selected source file. You can also use the χ button to close
tabs.

• Close Others – Close all source files except the currently selected file.
• Close All – Close all source files.
• Next – Display the next view.
• Previous – Display the previous view.
• New Horizontal Group – Split the Source window horizontally to display the

selected source file below another file.
• New Vertical Group – Split the Source window vertically to display the selected

source file side-by-side with another file.
• Floating – Display the current source file in a new window, outside the Source pane.

View Code Block

On the Source pane, to highlight a block of code, click either its opening or closing brace.
If the brace itself is highlighted, click the brace twice.

5-52

 Windows Used to Review Results

Result Details

The Result Details pane contains comprehensive information about a specific defect. To
see this information, on the Results List pane, select the defect.

On this pane, you can also assign a Severity and Status to each check. You can also
enter comments to describe the results of your review. This action helps you track the
progress of your review and avoid reviewing the same check twice.

5-53

5 View Results in the Polyspace Environment

• The top right corner shows the file and function containing the defect, in the format
file_name/function_name.

• The yellow box contains the name of the defect with an explanation of why the defect
occurs.

• The Event column lists the sequence of code instructions causing the defect. The
Scope column lists the function containing the instructions. If the instructions are
not in a function, the column lists the file containing the instructions. The Line
column lists the line number of the instructions.

• The Variable trace check box allows you to see an additional set of instructions that
are related to the defect.

•
The button allows you to access documentation for the defect.

For more information, see “Navigate to Root Cause of Defect” on page 5-37.

5-54

 Bug Finder Defect Groups

Bug Finder Defect Groups

In this section...

“Concurrency” on page 5-55
“Data flow” on page 5-56
“Dynamic Memory” on page 5-56
“Good Practice” on page 5-56
“Numerical” on page 5-57
“Object Oriented” on page 5-57
“Programming” on page 5-57
“Resource Management” on page 5-58
“Static Memory” on page 5-58
“Security” on page 5-58
“Tainted data” on page 5-59

Concurrency

These defects are related to multitasking code.

Data Race Defects

The data race defects occur when multiple tasks operate on a shared variable or call a
nonreentrant standard library function without protection.

For the specific defects, see “Concurrency Defects”.

Command-Line Parameter: concurrency

Locking Defects

The locking defects occur when the critical sections are not set up appropriately. For
example:

• The critical sections are involved in a deadlock.
• A lock function does not have the corresponding unlock function.
• A lock function is called twice without an intermediate call to an unlock function.

5-55

5 View Results in the Polyspace Environment

Critical sections protect shared variables from concurrent access. Polyspace expects
critical sections to follow a certain format. The critical section must lie between a call to a
lock function and a call to an unlock function.

For the specific defects, see “Concurrency Defects”.

Command-Line Parameter: concurrency

Data flow

These defects are errors relating to how information moves throughout your code. The
defects include:

• Dead or unreachable code
• Unused code
• Non-initialized information

For the specific defects, see “Data Flow Defects”.

Command-Line Parameter: data_flow

Dynamic Memory

These defects are errors relating to memory usage when the memory is dynamically
allocated. The defects include:

• Freeing dynamically allocated memory
• Unprotected memory allocations

For specific defects, see “Dynamic Memory Defects”.

Command-Line Parameter: dynamic_memory

Good Practice

These defects allow you to observe good coding practices. The defects by themselves
might not cause a crash, but they sometimes highlight more serious logic errors in your
code. The defects also make your code vulnerable to attacks and hard to maintain.

The defects include:

5-56

 Bug Finder Defect Groups

• Hard-coded constants such as buffer size and loop boundary
• Unused function parameters

For specific defects, see “Good Practice Defects”.

Command-Line Parameter: good_practice

Numerical

These defects are errors relating to variables in your code; their values, data types, and
usage. The defects include:

• Mathematical operations
• Conversion overflow
• Operational overflow

For specific defects, see “Numerical Defects”.

Command-Line Parameter: numerical

Object Oriented

These defects are related to the object-oriented aspect of C++ programming. The defects
highlight class design issues or issues in the inheritance hierarchy.

The defects include:

• Data member not initialized or incorrectly initialized in constructor
• Incorrect overriding of base class methods
• Breaking of data encapsulation

For specific defects, see “Object Oriented Defects”.

Command-Line Parameter: object_oriented

Programming

These defects are errors relating to programming syntax. These defects include:

5-57

5 View Results in the Polyspace Environment

• Assignment versus equality operators
• Mismatches between variable qualifiers or declarations
• Badly formatted strings

For specific defects, see “Programming Defects”.

Command-Line Parameter: programming

Resource Management

These defects are related to file handling. The defects include:

• Unclosed file stream
• Operations on a file stream after it is closed

For specific defects, see “Resource Management Defects”.

Command-Line Parameter: resource_management

Static Memory

These defects are errors relating to memory usage when the memory is statically
allocated. The defects include:

• Accessing arrays outside their bounds
• Null pointers
• Casting of pointers

For specific defects, see “Static Memory Defects”.

Command-Line Parameter: static_memory

Security

These defects highlight places in your code which are vulnerable to hacking or other
security attacks. Many of these defects do not cause runtime errors, but instead point out
risky areas in your code. The defects include:

• Managing sensitive data

5-58

 Bug Finder Defect Groups

• Using dangerous or obsolete functions
• Generating random numbers
• Externally controlled paths and commands

For more details about specific defects, see “Security Defects”.

Command-Line Parameter: security

Tainted data

These defects highlight elements in your code which are from unsecured sources.
Malicious attackers can use input data or paths to attack your program and cause
failures. These defects highlight elements in your code that are vulnerable. Defects
include:

• Use of tainted variables or pointers
• Externally controlled paths

For more details about specific defects, see “Tainted Data Defects”.

Command-Line Parameter: tainted_data

5-59

5 View Results in the Polyspace Environment

HIS Code Complexity Metrics

The following list shows the Hersteller Initiative Software (HIS) standard metrics that
Polyspace evaluates. These metrics and the recommended limits for their values are
part of a standard defined by a major group of Original Equipment Manufacturers or
OEMs. For more information on how to focus your review to this subset of code metrics,
see “Review Code Metrics” on page 5-33.

Project

Polyspace evaluates the following HIS metrics at the project level.

Metric Recommended Upper Limit

Number of Direct Recursions 0
Number of Recursions 0

File

Polyspace evaluates the HIS metric, comment density, at the file level. The recommended
lower limit is 20.

Function

Polyspace evaluates the following HIS metrics at the function level.

Metric Recommended Upper Limit

Cyclomatic Complexity 10
Language Scope 4
Number of Call Levels 4
Number of Calling Functions 5
Number of Called Functions 7
Number of Function Parameters 5
Number of Goto Statements 0
Number of Instructions 50

5-60

 HIS Code Complexity Metrics

Metric Recommended Upper Limit

Number of Paths 80
Number of Return Statements 1

5-61

5 View Results in the Polyspace Environment

Common Weakness Enumeration from Bug Finder Defects

In this section...

“Common Weakness Enumeration” on page 5-62
“Polyspace Bug Finder and CWE Compatibility” on page 5-62

Common Weakness Enumeration

Common Weakness Enumeration (CWE™) is a dictionary of common software
weaknesses that can occur in software architecture, design, code, or implementation.
These weaknesses can lead to security vulnerabilities.

The dictionary assigns a unique identifier to each software weakness. Therefore, this
dictionary serves as a common language for describing software security weaknesses, and
a standard for software security tools targeting these weaknesses.

For more information, see Common Weakness Enumeration.

Polyspace Bug Finder and CWE Compatibility

With Polyspace Bug Finder, you can check and document whether your software contains
weaknesses listed in the CWE dictionary. Polyspace Bug Finder supports some aspects of
the CWE Compatibility and Effectiveness Program:

CWE Compatibility
Requirement

Polyspace Bug Finder Support

CWE Searchable You can list instances of a software weakness corresponding
to a certain CWE identifier.

For more information, see “Filter CWE Identifiers” on page
5-64.

CWE Output • You can view CWE identifiers corresponding to certain
Polyspace Bug Finder defects.

For more information, see “View CWE Identifiers” on
page 5-64.

• You can include CWE identifiers corresponding to
Polyspace Bug Finder defects in your report.

5-62

http://cwe.mitre.org/

 Common Weakness Enumeration from Bug Finder Defects

CWE Compatibility
Requirement

Polyspace Bug Finder Support

For more information, see “Generate Report with CWE
Identifiers” on page 5-64.

For more information on the CWE Compatibility and Effectiveness Program, see CWE
Compatibility.

Related Examples
• “Find CWE Identifiers from Defects” on page 5-64

More About
• “Mapping Between CWE Identifiers and Defects” on page 5-66

5-63

https://cwe.mitre.org/compatible/
https://cwe.mitre.org/compatible/

5 View Results in the Polyspace Environment

Find CWE Identifiers from Defects

This example shows how to check whether your software has weaknesses listed by
the Common Weakness Enumeration or CWE dictionary. The dictionary assigns a
unique identifier to each software weakness. When a Polyspace Bug Finder result can
be associated with CWE identifiers, the software displays those identifiers for the result.
Using the identifiers, you can evaluate your code against CWE standards.

In this section...

“View CWE Identifiers” on page 5-64
“Filter CWE Identifiers” on page 5-64
“Generate Report with CWE Identifiers” on page 5-64

View CWE Identifiers

To view the CWE identifiers for defects on the Results List pane:

1 Right-click any column header.
2 Select CWE ID.

Filter CWE Identifiers

To filter a particular CWE identifier:

1 On the CWE ID column, click the icon.
2 From the drop-down list, select Custom.
3 From the Condition drop-down list, select contains.
4 In the Value field, enter the CWE ID that you want to filter. Click OK.

Generate Report with CWE Identifiers

To generate a report containing CWE identifiers, do the following.

• To enable report generation before analysis:

1 On the Configuration pane, select Reporting.

5-64

 Find CWE Identifiers from Defects

2 Select Generate report.
3 From the Report template list, select BugFinder_CWE.

• To generate a report after analysis:

1 Open your results.
2 Select Reporting > Run Report.
3 From the Select Reports list, select BugFinder_CWE.

More About
• “Common Weakness Enumeration from Bug Finder Defects” on page 5-62
• “Mapping Between CWE Identifiers and Defects” on page 5-66

5-65

5 View Results in the Polyspace Environment

Mapping Between CWE Identifiers and Defects
The following table lists the CWE IDs (version 2.8) addressed by Polyspace Bug Finder
and the corresponding defects.

CWE ID CWE ID Description Polyspace Bug Finder Defect

15 External control
of system or
configuration
setting

Host change using externally controlled elements

Use of externally controlled environment variable

20 Improper input
validation

Unsafe conversion from string to numerical value

22 Improper limitation
of a pathname to a
restricted directory

Vulnerable path manipulation

23 Relative path
traversal

Vulnerable path manipulation

36 Absolute path
traversal

Vulnerable path manipulation

77 Improper
neutralization of
special elements
used in a command

Execution of externally controlled command

78 Improper
neutralization of
special elements
used in an OS
command

Command executed from externally controlled path

Execution of externally controlled command

88 Argument injection
or modification

Execution of externally controlled command

114 Process control Execution of a binary from a relative path can be
controlled by an external actor

Library loaded from externally controlled path

Load of library from a relative path can be controlled
by an external actor

5-66

http://cwe.mitre.org/data/definitions/15.html
http://cwe.mitre.org/data/definitions/20.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/23.html
http://cwe.mitre.org/data/definitions/36.html
http://cwe.mitre.org/data/definitions/77.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/88.html
http://cwe.mitre.org/data/definitions/114.html

 Mapping Between CWE Identifiers and Defects

CWE ID CWE ID Description Polyspace Bug Finder Defect

119 Improper restriction
of operations within
the bounds of a
memory buffer

Array access out of bounds

Pointer access out of bounds

120 Buffer copy without
checking size of
input ('Classic
buffer overflow')

Invalid use of standard library memory routine

Invalid use of standard library string routine

Tainted NULL or non-null-terminated string
121 Stack-based buffer

overflow
Array access with tainted index

Destination buffer overflow in string manipulation
122 Heap-based buffer

overflow
Pointer dereference with tainted offset

124 Buffer underwrite
('Buffer underflow')

Array access with tainted index

Buffer overflow from incorrect string format specifier

Destination buffer underflow in string manipulation

Pointer dereference with tainted offset
125 Out-of-bounds read Array access with tainted index

Buffer overflow from incorrect string format specifier

Destination buffer overflow in string manipulation

Use of tainted pointer
126 Buffer over-read Buffer overflow from incorrect string format specifier
127 Buffer under-read Buffer overflow from incorrect string format specifier
129 Improper validation

of array index
Array access with tainted index

Pointer dereference with tainted offset
130 Improper handling

of length parameter
inconsistency

Mismatch between data length and size

5-67

http://cwe.mitre.org/data/definitions/119.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/121.html
http://cwe.mitre.org/data/definitions/122.html
http://cwe.mitre.org/data/definitions/124.html
http://cwe.mitre.org/data/definitions/125.html
http://cwe.mitre.org/data/definitions/126.html
http://cwe.mitre.org/data/definitions/127.html
http://cwe.mitre.org/data/definitions/129.html
http://cwe.mitre.org/data/definitions/130.html

5 View Results in the Polyspace Environment

CWE ID CWE ID Description Polyspace Bug Finder Defect

134 Uncontrolled format
string

Tainted string format

170 Improper null
termination

Missing null in string array

Tainted NULL or non-null-terminated string
188 Reliance on data/

memory layout
Invalid assumptions about memory organization

Pointer access out of bounds
190 Integer overflow or

wraparound
Integer conversion overflow

Integer overflow

Shift operation overflow

Tainted division operand

Unsigned integer conversion overflow

Unsigned integer overflow
191 Integer underflow

(Wrap or
wraparound)

Integer conversion overflow

Integer overflow

Unsigned integer conversion overflow

Unsigned integer overflow
194 Unexpected sign

extension
Sign change integer conversion overflow

Tainted sign change conversion
195 Signed to unsigned

conversion error
Sign change integer conversion overflow

Tainted sign change conversion
196 Unsigned to signed

conversion error
Sign change integer conversion overflow

5-68

http://cwe.mitre.org/data/definitions/134.html
http://cwe.mitre.org/data/definitions/170.html
http://cwe.mitre.org/data/definitions/188.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/191.html
http://cwe.mitre.org/data/definitions/194.html
http://cwe.mitre.org/data/definitions/195.html
http://cwe.mitre.org/data/definitions/196.html

 Mapping Between CWE Identifiers and Defects

CWE ID CWE ID Description Polyspace Bug Finder Defect

197 Numeric truncation
error

Integer conversion overflow

Float conversion overflow

Unsigned integer conversion overflow
226 Sensitive

information
uncleared before
release

Uncleared sensitive data in stack

227 Improper
fulfillment of API
contract

Invalid use of standard library floating point routine

Invalid use of standard library integer routine

Invalid use of standard library memory routine

Invalid use of standard library routine

Invalid use of standard library string routine

Writing to const qualified object
240 Improper handling

of inconsistent
structural elements

Mismatch between data length and size

242 Use of inherently
dangerous function

Use of dangerous standard function

243 Creation of chroot
jail without
changing working
directory

File manipulation after chroot() without chdir(“/”)

244 Improper clearing of
heap memory before
release

Sensitive heap memory not cleared before release

250 Execution with
unnecessary
privileges

Bad order of dropping privileges

Privilege drop not verified

5-69

http://cwe.mitre.org/data/definitions/197.html
http://cwe.mitre.org/data/definitions/226.html
http://cwe.mitre.org/data/definitions/227.html
http://cwe.mitre.org/data/definitions/240.html
http://cwe.mitre.org/data/definitions/242.html
http://cwe.mitre.org/data/definitions/243.html
http://cwe.mitre.org/data/definitions/244.html
http://cwe.mitre.org/data/definitions/250.html

5 View Results in the Polyspace Environment

CWE ID CWE ID Description Polyspace Bug Finder Defect

251 Often misused:
string management

Destination buffer overflow in string manipulation

252 Unchecked return
value

Returned value of a sensitive function not checked

273 Improper check for
dropped privileges

Privilege drop not verified

327 Use of a broken or
risky cryptographic
algorithm

Unsafe standard encryption function

330 Use of insufficiently
random values

Deterministic random output from constant seed

Predictable random output from predictable seed

Vulnerable pseudo-random number generator
336 Same seed in PRNG Deterministic random output from constant seed
337 Predictable seed in

PRNG
Predictable random output from predictable seed

338 Use of
cryptographically
weak pseudo-
random number
generator (PRNG)

Vulnerable pseudo-random number generator

362 Concurrent
execution using
shared resource
with improper
synchronization
('Race Condition')

Opening previously opened resource

366 Race condition
within a thread

Data race including atomic operations

Data race

Data race through standard library function call

5-70

http://cwe.mitre.org/data/definitions/251.html
http://cwe.mitre.org/data/definitions/252.html
http://cwe.mitre.org/data/definitions/273.html
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/330.html
http://cwe.mitre.org/data/definitions/336.html
http://cwe.mitre.org/data/definitions/337.html
http://cwe.mitre.org/data/definitions/338.html
http://cwe.mitre.org/data/definitions/362.html
http://cwe.mitre.org/data/definitions/366.html

 Mapping Between CWE Identifiers and Defects

CWE ID CWE ID Description Polyspace Bug Finder Defect

367 Time-of-check time-
of-use (TOCTOU)
race condition

File access between time of check and use (TOCTOU)

369 Divide by zero Float division by zero

Integer division by zero

Invalid use of standard library floating point routine

Invalid use of standard library integer routine

Tainted division operand

Tainted modulo operand
377 Insecure temporary

file
Use of non-secure temporary file

398 Indicator of poor
code quality

Write without a further read

400 Uncontrolled
resource
consumption

Loop bounded with tainted value

401 Improper release
of memory before
removing last
reference

Memory leak

404 Improper resource
shutdown or release

Invalid deletion of pointer

Invalid free of pointer

Memory leak
415 Double free Missing reset of a freed pointer

Deallocation of previously deallocated pointer
416 Use after free Use of previously freed pointer

Missing reset of a freed pointer

5-71

http://cwe.mitre.org/data/definitions/367.html
http://cwe.mitre.org/data/definitions/369.html
http://cwe.mitre.org/data/definitions/377.html
http://cwe.mitre.org/data/definitions/398.html
http://cwe.mitre.org/data/definitions/400.html
http://cwe.mitre.org/data/definitions/401.html
http://cwe.mitre.org/data/definitions/404.html
http://cwe.mitre.org/data/definitions/415.html
http://cwe.mitre.org/data/definitions/416.html

5 View Results in the Polyspace Environment

CWE ID CWE ID Description Polyspace Bug Finder Defect

427 Uncontrolled search
path element

Execution of a binary from a relative path can be
controlled by an external actor

Library loaded from externally controlled path

Load of library from a relative path can be controlled
by an external actor

Use of externally controlled environment variable
456 Missing

initialization of a
variable

Member not initialized in constructor

Non-initialized pointer

Non-initialized variable
457 Use of uninitialized

variable
Member not initialized in constructor

Non-initialized pointer

Non-initialized variable
465 Pointer Issues Unsafe conversion between pointer and integer
466 Return of pointer

value outside of
expected range

Unsafe conversion between pointer and integer

Array access out of bounds

Pointer access out of bounds
467 Use of sizeof() on a

pointer type
Possible misuse of sizeof

Wrong type used in sizeof
468 Incorrect pointer

scaling
Incorrect pointer scaling

Unreliable cast of pointer
471 Modification of

assumed-immutable
data

Writing to const qualified object

475 Undefined behavior
for input to API

Copy of overlapping memory

5-72

http://cwe.mitre.org/data/definitions/427.html
http://cwe.mitre.org/data/definitions/456.html
http://cwe.mitre.org/data/definitions/457.html
http://cwe.mitre.org/data/definitions/465.html
http://cwe.mitre.org/data/definitions/466.html
http://cwe.mitre.org/data/definitions/467.html
http://cwe.mitre.org/data/definitions/468.html
http://cwe.mitre.org/data/definitions/471.html
http://cwe.mitre.org/data/definitions/475.html

 Mapping Between CWE Identifiers and Defects

CWE ID CWE ID Description Polyspace Bug Finder Defect

476 NULL pointer
dereference

Null pointer

Tainted NULL or non-null-terminated string
477 Use of obsolete

functions
Use of obsolete standard function

478 Missing default case
in switch statement

Missing case for switch condition

481 Assigning instead of
comparing

Invalid use of = operator

482 Comparing instead
of assigning

Invalid use of == operator

484 Omitted break
statement in switch

Missing break of switch case

532 Information
exposure through
log files

Sensitive data printed out

534 Information
exposure through
debug log files

Sensitive data printed out

535 Information
exposure through
shell error message

Sensitive data printed out

547 Use of hard-coded,
security-relevant
constants

Hard-coded buffer size

Hard-coded loop boundary

558 Use of getlogin()
in multithreaded
application

Unsafe standard function

560 Use of umask()
with chmod-style
argument

Umask used with chmod-style arguments

5-73

http://cwe.mitre.org/data/definitions/476.html
http://cwe.mitre.org/data/definitions/477.html
http://cwe.mitre.org/data/definitions/478.html
http://cwe.mitre.org/data/definitions/481.html
http://cwe.mitre.org/data/definitions/482.html
http://cwe.mitre.org/data/definitions/484.html
http://cwe.mitre.org/data/definitions/532.html
http://cwe.mitre.org/data/definitions/534.html
http://cwe.mitre.org/data/definitions/535.html
http://cwe.mitre.org/data/definitions/547.html
http://cwe.mitre.org/data/definitions/558.html
http://cwe.mitre.org/data/definitions/560.html

5 View Results in the Polyspace Environment

CWE ID CWE ID Description Polyspace Bug Finder Defect

561 Dead code Dead code

Static uncalled function

Unreachable code
562 Return of stack

variable address
Pointer or reference to stack variable leaving scope

573 Improper following
of specification by
caller

Modification of internal buffer returned from
nonreentrant standard function

587 Assignment of a
fixed address to a
pointer

Unsafe conversion between pointer and integer

Function pointer assigned with absolute address

590 Free of memory not
on the heap

Invalid free of pointer

606 Unchecked input for
loop condition

Loop bounded with tainted value

628 Function call with
incorrectly specified
arguments

Bad file access mode or status

Copy of overlapping memory

Invalid va_list argument

Modification of internal buffer returned from
nonreentrant standard function

Standard function call with incorrect arguments
663 Use of a non-

reentrant function
in a concurrent
context

Unsafe standard encryption function

Unsafe standard function

5-74

http://cwe.mitre.org/data/definitions/561.html
http://cwe.mitre.org/data/definitions/562.html
http://cwe.mitre.org/data/definitions/573.html
http://cwe.mitre.org/data/definitions/587.html
http://cwe.mitre.org/data/definitions/590.html
http://cwe.mitre.org/data/definitions/606.html
http://cwe.mitre.org/data/definitions/628.html
http://cwe.mitre.org/data/definitions/663.html

 Mapping Between CWE Identifiers and Defects

CWE ID CWE ID Description Polyspace Bug Finder Defect

665 Improper
initialization

Call to memset with unintended value

Improper array initialization

Overlapping assignment

Use of memset with size argument zero
666 Operation on

resource in wrong
phase of lifetime

Incorrect order of network connection operations

667 Improper locking Missing unlock
672 Operation on a

resource after
expiration or
release

Use of previously closed resource

Closing a previously closed resource

675 Duplicate
operations on
resource

Opening previously opened resource

676 Use of potentially
dangerous function

Unsafe conversion between pointer and integer

Use of dangerous standard function
681 Incorrect conversion

between numeric
types

Float conversion overflow

682 Incorrect
calculation

Absorption of float operand

Float overflow

Invalid use of standard library floating point routine

Invalid use of standard library integer routine

Tainted modulo operand

Bitwise operation on negative value

Use of plain char type for numerical value

5-75

http://cwe.mitre.org/data/definitions/665.html
http://cwe.mitre.org/data/definitions/666.html
https://cwe.mitre.org/data/definitions/667.html
http://cwe.mitre.org/data/definitions/672.html
http://cwe.mitre.org/data/definitions/675.html
http://cwe.mitre.org/data/definitions/676.html
http://cwe.mitre.org/data/definitions/681.html
http://cwe.mitre.org/data/definitions/682.html

5 View Results in the Polyspace Environment

CWE ID CWE ID Description Polyspace Bug Finder Defect

685 Function call with
incorrect number of
arguments

Declaration mismatch

Format string specifiers and arguments mismatch

Standard function call with incorrect arguments
686 Function call with

incorrect argument
type

Bad file access mode or status

Declaration mismatch

Format string specifiers and arguments mismatch

Standard function call with incorrect arguments

Writing to const qualified object
687 Function call with

incorrectly specified
argument value

Copy of overlapping memory

Standard function call with incorrect arguments

Tainted size of variable length array

Variable length array with nonpositive size
691 Insufficient control

flow management
Use of setjmp/longjmp

696 Incorrect behavior
order

Bad order of dropping privileges

704 Incorrect type
conversion or cast

Qualifier removed in conversion

Unreliable cast of pointer

Wrong allocated object size for cast
705 Incorrect control

flow scoping
Abnormal termination of exit handler

710 Coding standard
violation

Bitwise and arithmetic operation on the same data

5-76

http://cwe.mitre.org/data/definitions/685.html
http://cwe.mitre.org/data/definitions/686.html
http://cwe.mitre.org/data/definitions/687.html
http://cwe.mitre.org/data/definitions/691.html
http://cwe.mitre.org/data/definitions/696.html
http://cwe.mitre.org/data/definitions/704.html
http://cwe.mitre.org/data/definitions/705.html
http://cwe.mitre.org/data/definitions/710.html

 Mapping Between CWE Identifiers and Defects

CWE ID CWE ID Description Polyspace Bug Finder Defect

732 Incorrect
permission
assignment for
critical resource

Vulnerable permission assignments

754 Improper check
for unusual
or exceptional
conditions

Returned value of a sensitive function not checked

755 Improper handling
of exceptional
conditions

Exception handler hidden by previous handler

758 Reliance on
undefined,
unspecified, or
implementation-
defined behavior

Unsafe conversion between pointer and integer

Use of plain char type for numerical value

Bitwise operation on negative value

762 Mismatched
memory
management
routines

Invalid free of pointer

764 Multiple locks of a
critical resource

Double lock

765 Multiple unlocks of
a critical resource

Double unlock

767 Access to critical
private variable via
public method

Return of non const handle to encapsulated data
member

770 Allocation of
resources without
limits or throttling

Tainted size of variable length array

772 Missing release
of resource after
effective lifetime

Resource leak

5-77

http://cwe.mitre.org/data/definitions/732.html
http://cwe.mitre.org/data/definitions/754.html
http://cwe.mitre.org/data/definitions/755.html
http://cwe.mitre.org/data/definitions/758.html
http://cwe.mitre.org/data/definitions/762.html
https://cwe.mitre.org/data/definitions/764.html
https://cwe.mitre.org/data/definitions/765.html
http://cwe.mitre.org/data/definitions/767.html
http://cwe.mitre.org/data/definitions/770.html
http://cwe.mitre.org/data/definitions/772.html

5 View Results in the Polyspace Environment

CWE ID CWE ID Description Polyspace Bug Finder Defect

783 Operator
precedence logic
error

Possibly unintended evaluation of expression because
of operator precedence rules

785 Use of path
manipulation
function without
maximum-sized
buffer

Use of path manipulation function without maximum
sized buffer checking

786 Access of memory
location before start
of buffer

Destination buffer underflow in string manipulation

787 Out-of-bounds write Destination buffer overflow in string manipulation

Destination buffer underflow in string manipulation

Use of tainted pointer
789 Uncontrolled

memory allocation
Memory allocation with tainted size

Tainted size of variable length array

Unprotected dynamic memory allocation
805 Buffer access with

incorrect length
value

Hard-coded object size used to manipulate memory

822 Untrusted pointer
dereference

Tainted NULL or non-null-terminated string

Use of tainted pointer
823 Use of out-of-range

pointer offset
Pointer access out of bounds

Pointer dereference with tainted offset
824 Access of

uninitialized
pointer

Non-initialized pointer

826 Premature release
of resource during
expected lifetime

Destruction of locked mutex

5-78

http://cwe.mitre.org/data/definitions/783.html
http://cwe.mitre.org/data/definitions/785.html
http://cwe.mitre.org/data/definitions/786.html
http://cwe.mitre.org/data/definitions/787.html
http://cwe.mitre.org/data/definitions/789.html
http://cwe.mitre.org/data/definitions/805.html
http://cwe.mitre.org/data/definitions/822.html
http://cwe.mitre.org/data/definitions/823.html
http://cwe.mitre.org/data/definitions/824.html
http://cwe.mitre.org/data/definitions/826.html

 Mapping Between CWE Identifiers and Defects

CWE ID CWE ID Description Polyspace Bug Finder Defect

832 Unlock of a resource
that is not locked

Missing lock

833 Deadlock Deadlock
835 Loop with

unreachable exit
condition

Loop bounded with tainted value

843 Access of resource
using incompatible
type ('Type
confusion')

Unreliable cast of pointer

872 CERT C++ Secure
Coding Section 04 -
Integers (INT)

Invalid use of standard library integer routine

873 CERT C++ Secure
Coding Section 05
- Floating point
arithmetic (FLP)

Absorption of float operand

Invalid use of floating point operation

Invalid use of standard library floating point routine

Float overflow
908 Use of uninitialized

resource
Member not initialized in constructor

Non-initialized pointer

Non-initialized variable

5-79

https://cwe.mitre.org/data/definitions/832.html
https://cwe.mitre.org/data/definitions/833.html
http://cwe.mitre.org/data/definitions/835.html
http://cwe.mitre.org/data/definitions/843.html
http://cwe.mitre.org/data/definitions/872.html
http://cwe.mitre.org/data/definitions/873.html
http://cwe.mitre.org/data/definitions/908.html

5 View Results in the Polyspace Environment

Mapping Between CERT C Standards and Polyspace Results

The following tables list the CERT C rules and recommendations that Polyspace Bug
Finder addresses. Using Bug Finder results (defects and coding rule violations), you can
address 59 CERT C rules and 85 CERT C recommendations6.

In some cases, despite the mapping, you might not see a defect on a noncompliant
example from the CERT C documentation. For more information, see “Differences
Between CERT C Standards and Defects” on page 5-111.

To comply with CERT C Standards, you can choose to look only for those defects and
MISRA C coding rules that correspond to CERT C Standards. For more information, see:

• “Choose Specific Defects” on page 4-2
• “Select Specific MISRA or JSF Coding Rules” on page 3-6

CERT C Rules

The following tables list the CERT C rules that Polyspace Bug Finder addresses and the
corresponding defects or MISRA C: 2012 rule.

Rule 01. Preprocessor (PRE)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

PRE31-
C

Declare
objects with
appropriate
storage
durations

 MISRA C:2012 Rule 13.2

Rule 02. Declarations and Initialization (DCL)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

DCL30-
C

Declare
objects with
appropriate

Pointer or reference to

stack variable leaving

scope

MISRA C:2012 Rule 18.6

6. For comparison, the print version of the CERT C rules (second edition) lists 98 rules. The CERT C
website, under continuous development, lists 118 rules and 188 recommendations as of 8th January,
2016.

5-80

https://www.securecoding.cert.org/confluence/x/agBi
https://www.securecoding.cert.org/confluence/x/agBi
https://www.securecoding.cert.org/confluence/x/bQ4
https://www.securecoding.cert.org/confluence/x/bQ4
https://www.cert.org/
https://www.cert.org/

 Mapping Between CERT C Standards and Polyspace Results

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

storage
durations

DCL31-
C

Declare
identifiers
before using
them

 MISRA C:2012 Rule 8.1

MISRA C:2012 Rule 17.3

DCL36-
C

Do not
declare an
identifier with
conflicting
linkage
classifications

 MISRA C:2012 Rule 8.2

MISRA C:2012 Rule 8.4

MISRA C:2012 Rule 8.8

MISRA C:2012 Rule 17.3

DCL37-
C

Do not declare
or define
a reserved
identifier

 MISRA C:2012 Rule 21.1

MISRA C:2012 Rule 21.2

DCL40-
C

Do not create
incompatible
declarations
of the same
function or
object

Declaration mismatch MISRA C:2012 Rule 5.1

MISRA C:2012 Rule 8.3

DCL41-
C

Do not declare
variables
inside a switch
statement
before the first
case label

Declaration mismatch MISRA C:2012 Rule 16.1

Rule 03. Expressions (EXP)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

EXP30-
C

Do not depend
on the order of
evaluation for
side effects

 MISRA C:2012 Rule 13.2

5-81

https://www.securecoding.cert.org/confluence/x/tgDI
https://www.securecoding.cert.org/confluence/x/tgDI
https://www.securecoding.cert.org/confluence/x/hoAg
https://www.securecoding.cert.org/confluence/x/hoAg
https://www.securecoding.cert.org/confluence/x/-4AzAg
https://www.securecoding.cert.org/confluence/x/-4AzAg
https://www.securecoding.cert.org/confluence/x/cwGTAw
https://www.securecoding.cert.org/confluence/x/cwGTAw
https://www.securecoding.cert.org/confluence/x/A4EzAg
https://www.securecoding.cert.org/confluence/x/A4EzAg
https://www.securecoding.cert.org/confluence/x/ZwE
https://www.securecoding.cert.org/confluence/x/ZwE

5 View Results in the Polyspace Environment

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

EXP32-
C

Do not access
a volatile
object through
a nonvolatile
reference

Qualifier removed in

conversion

MISRA C:2012 Rule 11.8

EXP33-
C

Do not read
uninitialized
memory

Non-initialized pointer

Non-initialized variable

EXP34-
C

Do not
dereference
null pointers

Arithmetic operation

with NULL pointer

Null pointer

Use of tainted pointer

EXP36-
C

Do not cast
pointers
into more
strictly aligned
pointer types

Unreliable cast of

pointer

MISRA C:2012 Rule 11.1

MISRA C:2012 Rule 11.2

MISRA C:2012 Rule 11.3

MISRA C:2012 Rule 11.5

MISRA C:2012 Rule 11.7

EXP37-
C

Call functions
with the
correct
number
and type of
arguments

Declaration mismatch

Qualifier removed in

conversion

Standard function call

with incorrect arguments

Format string specifiers

and arguments mismatch

Unreliable cast of

function pointer

MISRA C:2012 Rule 8.3

MISRA C:2012 Rule 11.1

MISRA C:2012 Rule 17.3

EXP39-
C

Do not access
a variable

Pointer access out of

bounds

5-82

https://www.securecoding.cert.org/confluence/x/hAY
https://www.securecoding.cert.org/confluence/x/hAY
https://www.securecoding.cert.org/confluence/x/4gE
https://www.securecoding.cert.org/confluence/x/4gE
https://www.securecoding.cert.org/confluence/x/PAw
https://www.securecoding.cert.org/confluence/x/PAw
https://www.securecoding.cert.org/confluence/x/tgAV
https://www.securecoding.cert.org/confluence/x/tgAV
https://www.securecoding.cert.org/confluence/x/VQBc
https://www.securecoding.cert.org/confluence/x/VQBc
https://www.securecoding.cert.org/confluence/x/-QFqAQ
https://www.securecoding.cert.org/confluence/x/-QFqAQ

 Mapping Between CERT C Standards and Polyspace Results

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

through a
pointer of an
incompatible
type

EXP40-
C

Do not modify
constant
objects

Writing to const

qualified object

EXP43-
C

Avoid
undefined
behavior when
using restrict-
qualified
pointers

Copy of overlapping

memory

MISRA C:2012 Rule 8.14

EXP45-
C

Do not
perform
assignments
in selection
statements

Invalid use of

assignment operator

Rule 04. Integers (INT)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

INT30-
C

Ensure that
unsigned
integer
operations do
not wrap

Unsigned integer

overflow

INT31-
C

Ensure
that integer
conversions
do not result
in lost or
misinterpreted
data

Integer conversion

overflow

Sign change integer

conversion overflow

Tainted sign change

conversion

MISRA C:2012 Rule 10.1

MISRA C:2012 Rule 10.3

MISRA C:2012 Rule 10.4

MISRA C:2012 Rule 10.6

MISRA C:2012 Rule 10.7

5-83

https://www.securecoding.cert.org/confluence/x/gAU
https://www.securecoding.cert.org/confluence/x/gAU
https://www.securecoding.cert.org/confluence/x/QQBLBw
https://www.securecoding.cert.org/confluence/x/QQBLBw
https://www.securecoding.cert.org/confluence/x/nYFtAg
https://www.securecoding.cert.org/confluence/x/nYFtAg
https://www.securecoding.cert.org/confluence/x/tIPu
https://www.securecoding.cert.org/confluence/x/tIPu
https://www.securecoding.cert.org/confluence/x/RQE
https://www.securecoding.cert.org/confluence/x/RQE

5 View Results in the Polyspace Environment

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

Unsigned integer

conversion overflow

INT32-
C

Ensure that
operations
on signed
integers do
not result in
overflow

Integer overflow

Tainted division operand

INT33-
C

Ensure that
division and
remainder
operations do
not result in
divide-by-zero
errors

Integer division by zero

Tainted division operand

Tainted modulo operand

INT34-
C

Do not shift
an expression
by a negative
number of bits
or by greater
than or equal
to the number
of bits that
exist in the
operand

Shift of a negative

value

Shift operation overflow

INT36-
C

Converting
a pointer to
integer or
integer to
pointer

Hard-coded object size

used to manipulate

memory

MISRA C:2012 Rule 11.6

Rule 05. Floating Point (FLP)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

FLP30-
C

Do not use
floating-point

 MISRA C:2012 Rule 14.1

5-84

https://www.securecoding.cert.org/confluence/x/RgE
https://www.securecoding.cert.org/confluence/x/RgE
https://www.securecoding.cert.org/confluence/x/cAI
https://www.securecoding.cert.org/confluence/x/cAI
https://www.securecoding.cert.org/confluence/x/IRE
https://www.securecoding.cert.org/confluence/x/IRE
https://www.securecoding.cert.org/confluence/x/XAAV
https://www.securecoding.cert.org/confluence/x/XAAV
https://www.securecoding.cert.org/confluence/display/c/FLP30-C.+Do+not+use+floating-point+variables+as+loop+counters
https://www.securecoding.cert.org/confluence/display/c/FLP30-C.+Do+not+use+floating-point+variables+as+loop+counters

 Mapping Between CERT C Standards and Polyspace Results

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

variables as
loop counters

FLP32-
C

Prevent or
detect domain
and range
errors in math
functions

Invalid use of standard

library floating point

routine

FLP34-
C

Ensure that
floating-point
conversions
are within
range of the
new type

Float conversion

overflow

Integer conversion

overflow

Unsigned integer

conversion overflow

Rule 06. Arrays (ARR)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

ARR30-
C

Do not form
or use out-
of-bounds
pointers
or array
subscripts

Array access out of

bounds

Array access with

tainted index

Pointer access out of

bounds

Pointer dereference with

tainted offset

Use of tainted pointer

MISRA C:2012 Rule 18.1

ARR32-
C

Ensure size
arguments
for variable
length arrays
are in a valid
range

Tainted size of variable

length array

5-85

https://www.securecoding.cert.org/confluence/display/c/FLP32-C.+Prevent+or+detect+domain+and+range+errors+in+math+functions
https://www.securecoding.cert.org/confluence/display/c/FLP32-C.+Prevent+or+detect+domain+and+range+errors+in+math+functions
https://www.securecoding.cert.org/confluence/display/c/FLP34-C.+Ensure+that+floating-point+conversions+are+within+range+of+the+new+type
https://www.securecoding.cert.org/confluence/display/c/FLP34-C.+Ensure+that+floating-point+conversions+are+within+range+of+the+new+type
https://www.securecoding.cert.org/confluence/display/c/ARR30-C.+Do+not+form+or+use+out-of-bounds+pointers+or+array+subscripts
https://www.securecoding.cert.org/confluence/display/c/ARR30-C.+Do+not+form+or+use+out-of-bounds+pointers+or+array+subscripts
https://www.securecoding.cert.org/confluence/display/c/ARR32-C.+Ensure+size+arguments+for+variable+length+arrays+are+in+a+valid+range
https://www.securecoding.cert.org/confluence/display/c/ARR32-C.+Ensure+size+arguments+for+variable+length+arrays+are+in+a+valid+range

5 View Results in the Polyspace Environment

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

ARR37-
C

Do not add
or subtract
an integer to
a pointer to
a non-array
object

Invalid assumptions

about memory

organization

ARR38-
C

Guarantee
that library
functions
do not form
invalid
pointers

Array access out of

bounds

Buffer overflow from

incorrect string format

specifier

Destination buffer

overflow in string

manipulation

Destination buffer

underflow in string

manipulation

Invalid use of standard

library memory routine

Invalid use of standard

library string routine

Mismatch between data

length and size

Pointer access out of

bounds

Possible misuse of

sizeof

Use of tainted pointer

ARR39-
C

Do not add
or subtract a

Incorrect pointer

scaling

MISRA C:2012 Rule 18.1

5-86

https://www.securecoding.cert.org/confluence/display/c/ARR37-C.+Do+not+add+or+subtract+an+integer+to+a+pointer+to+a+non-array+object
https://www.securecoding.cert.org/confluence/display/c/ARR37-C.+Do+not+add+or+subtract+an+integer+to+a+pointer+to+a+non-array+object
https://www.securecoding.cert.org/confluence/display/c/ARR38-C.+Guarantee+that+library+functions+do+not+form+invalid+pointers
https://www.securecoding.cert.org/confluence/display/c/ARR38-C.+Guarantee+that+library+functions+do+not+form+invalid+pointers
https://www.securecoding.cert.org/confluence/display/c/ARR39-C.+Do+not+add+or+subtract+a+scaled+integer+to+a+pointer
https://www.securecoding.cert.org/confluence/display/c/ARR39-C.+Do+not+add+or+subtract+a+scaled+integer+to+a+pointer

 Mapping Between CERT C Standards and Polyspace Results

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

scaled integer
to a pointer

Pointer access out of

bounds

Possible misuse of

sizeof

Rule 07. Characters and Strings (STR)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

STR30-
C

Do not
attempt to
modify string
literals

Writing to const

qualified object

STR31-
C

Guarantee
that storage
for strings
has sufficient
space for
character
data and null
terminator

Array access out of

bounds

Buffer overflow from

incorrect string format

specifier

Destination buffer

overflow in string

manipulation

Invalid use of standard

library string routine

Missing null in string

array

Pointer access out of

bounds

Tainted NULL or non-

null-terminated string

Use of dangerous

standard function

5-87

https://www.securecoding.cert.org/confluence/display/c/STR30-C.+Do+not+attempt+to+modify+string+literals
https://www.securecoding.cert.org/confluence/display/c/STR30-C.+Do+not+attempt+to+modify+string+literals
https://www.securecoding.cert.org/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator
https://www.securecoding.cert.org/confluence/display/c/STR31-C.+Guarantee+that+storage+for+strings+has+sufficient+space+for+character+data+and+the+null+terminator

5 View Results in the Polyspace Environment

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

STR32-
C

Do not pass
a non-null-
terminated
character
sequence
to a library
function that
expects a
string

Invalid use of standard

library string routine

Standard function call

with incorrect arguments

Tainted NULL or non-

null-terminated string

STR38-
C

Do not confuse
narrow
and wide
characters
strings and
functions

Wrong allocated object

size for cast

Destination buffer

overflow in string

manipulation

Rule 08. Memory Management (MEM)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

MEM30-
C

Do not access
freed memory

Deallocation of

previously deallocated

pointer

Use of previously freed

pointer

MISRA C:2012 Directive

4.13

MISRA C:2012 Rule 18.6

MISRA C:2012 Rule 22.1

MEM31-
C

Free
dynamically
allocated
memory when
no longer
needed

Memory leak

MEM34-
C

Only free
memory
allocated
dynamically

Invalid free of pointer

MEM35-
C

Allocate
sufficient

Memory allocation with

tainted size

5-88

https://www.securecoding.cert.org/confluence/display/c/STR32-C.+Do+not+pass+a+non-null-terminated+character+sequence+to+a+library+function+that+expects+a+string
https://www.securecoding.cert.org/confluence/display/c/STR32-C.+Do+not+pass+a+non-null-terminated+character+sequence+to+a+library+function+that+expects+a+string
https://www.securecoding.cert.org/confluence/display/c/STR38-C.+Do+not+confuse+narrow+and+wide+character+strings+and+functions
https://www.securecoding.cert.org/confluence/display/c/STR38-C.+Do+not+confuse+narrow+and+wide+character+strings+and+functions
https://www.securecoding.cert.org/confluence/display/c/MEM30-C.+Do+not+access+freed+memory
https://www.securecoding.cert.org/confluence/display/c/MEM30-C.+Do+not+access+freed+memory
https://www.securecoding.cert.org/confluence/display/c/MEM31-C.+Free+dynamically+allocated+memory+when+no+longer+needed
https://www.securecoding.cert.org/confluence/display/c/MEM31-C.+Free+dynamically+allocated+memory+when+no+longer+needed
https://www.securecoding.cert.org/confluence/display/c/MEM34-C.+Only+free+memory+allocated+dynamically
https://www.securecoding.cert.org/confluence/display/c/MEM34-C.+Only+free+memory+allocated+dynamically
https://www.securecoding.cert.org/confluence/display/c/MEM35-C.+Allocate+sufficient+memory+for+an+object
https://www.securecoding.cert.org/confluence/display/c/MEM35-C.+Allocate+sufficient+memory+for+an+object

 Mapping Between CERT C Standards and Polyspace Results

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

memory for an
object

Pointer access out of

bounds

Wrong type used in

sizeof

Rule 09. Input Output (FIO)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

FIO24–
C

Do not open
a file that is
already open

Opening previously

opened resource

FIO30-
C

Exclude user
input from
format strings

Tainted string format

FIO42-
C

Close files
when they
are no longer
needed

Resource leak

FIO45-
C

Avoid
TOCTOU race
conditions
while
accessing files

File access between

time of check and use

(TOCTOU)

FIO46-
C

Do not access
a closed file

Closing a previously

closed resource

Standard function call

with incorrect arguments

Use of previously closed

resource

Rule 10. Environment (ENV)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

ENV30-
C

Do not modify
the object

Modification of internal

buffer returned from

5-89

https://www.securecoding.cert.org/confluence/x/pwA1
https://www.securecoding.cert.org/confluence/x/pwA1
https://www.securecoding.cert.org/confluence/display/c/FIO30-C.+Exclude+user+input+from+format+strings
https://www.securecoding.cert.org/confluence/display/c/FIO30-C.+Exclude+user+input+from+format+strings
https://www.securecoding.cert.org/confluence/display/c/FIO42-C.+Close+files+when+they+are+no+longer+needed
https://www.securecoding.cert.org/confluence/display/c/FIO42-C.+Close+files+when+they+are+no+longer+needed
https://www.securecoding.cert.org/confluence/display/c/FIO45-C.+Avoid+TOCTOU+race+conditions+while+accessing+files
https://www.securecoding.cert.org/confluence/display/c/FIO45-C.+Avoid+TOCTOU+race+conditions+while+accessing+files
https://www.securecoding.cert.org/confluence/display/c/FIO46-C.+Do+not+access+a+closed+file
https://www.securecoding.cert.org/confluence/display/c/FIO46-C.+Do+not+access+a+closed+file
https://www.securecoding.cert.org/confluence/display/c/ENV30-C.+Do+not+modify+the+object+referenced+by+the+return+value+of+certain+functions
https://www.securecoding.cert.org/confluence/display/c/ENV30-C.+Do+not+modify+the+object+referenced+by+the+return+value+of+certain+functions

5 View Results in the Polyspace Environment

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

referenced
by the return
value of
certain
functions

nonreentrant standard

function

ENV32-
C

All exit
handlers
must return
normally

Abnormal termination of

exit handler

ENV33-
C

Do not call
system()

Execution of externally

controlled command

Command executed from

externally controlled

path

Rule 12: Error Handling (ERR)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

ERR33–
C

Detect and
handle
standard
library errors

Returned value of a

sensitive function not

checked

Unprotected dynamic

memory allocation

ERR34–
C

Detect
errors when
converting
a string to a
number

Unsafe conversion from

string to numerical

value

Rule 14. Concurrency (CON)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

CON31-
C

Do not destroy
a mutex while
it is locked

Destruction of locked

mutex

5-90

https://www.securecoding.cert.org/confluence/x/voAg
https://www.securecoding.cert.org/confluence/x/voAg
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2130132
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=2130132
https://www.securecoding.cert.org/confluence/x/w4C4Ag
https://www.securecoding.cert.org/confluence/x/w4C4Ag
https://www.securecoding.cert.org/confluence/x/6AQ
https://www.securecoding.cert.org/confluence/x/6AQ
https://www.securecoding.cert.org/confluence/display/c/CON31-C.+Do+not+destroy+a+mutex+while+it+is+locked
https://www.securecoding.cert.org/confluence/display/c/CON31-C.+Do+not+destroy+a+mutex+while+it+is+locked

 Mapping Between CERT C Standards and Polyspace Results

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

CON32-
C

Prevent data
races when
accessing bit-
fields from
multiple
threads

Data race

CON33-
C

Avoid race
conditions
when using
library
functions

Data race through

standard library

function call

CON35-
C

Avoid deadlock
by locking in
a predefined
order

Deadlock

Rule 48. Miscellaneous (MSC)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

MSC30-
C

Do not use the
rand() function
for generating
pseudorandom
numbers

Vulnerable pseudo-random

number generator

MSC32-
C

Properly seed
pseudorandom
number
generators

Deterministic random

output from constant

seed

Predictable random

output from predictable

seed

MSC33-
C

Do not pass
invalid data to
the asctime()
function

Use of obsolete standard

function

MSC37-
C

Ensure that
control never

Missing return statement

5-91

https://www.securecoding.cert.org/confluence/display/c/CON32-C.+Prevent+data+races+when+accessing+bit-fields+from+multiple+threads
https://www.securecoding.cert.org/confluence/display/c/CON32-C.+Prevent+data+races+when+accessing+bit-fields+from+multiple+threads
https://www.securecoding.cert.org/confluence/display/c/CON33-C.+Avoid+race+conditions+when+using+library+functions
https://www.securecoding.cert.org/confluence/display/c/CON33-C.+Avoid+race+conditions+when+using+library+functions
https://www.securecoding.cert.org/confluence/display/c/CON35-C.+Avoid+deadlock+by+locking+in+a+predefined+order
https://www.securecoding.cert.org/confluence/display/c/CON35-C.+Avoid+deadlock+by+locking+in+a+predefined+order
https://www.securecoding.cert.org/confluence/display/c/MSC30-C.+Do+not+use+the+rand%28%29+function+for+generating+pseudorandom+numbers
https://www.securecoding.cert.org/confluence/display/c/MSC30-C.+Do+not+use+the+rand%28%29+function+for+generating+pseudorandom+numbers
https://www.securecoding.cert.org/confluence/display/c/MSC32-C.+Properly+seed+pseudorandom+number+generators
https://www.securecoding.cert.org/confluence/display/c/MSC32-C.+Properly+seed+pseudorandom+number+generators
https://www.securecoding.cert.org/confluence/display/c/MSC33-C.+Do+not+pass+invalid+data+to+the+asctime%28%29+function
https://www.securecoding.cert.org/confluence/display/c/MSC33-C.+Do+not+pass+invalid+data+to+the+asctime%28%29+function
https://www.securecoding.cert.org/confluence/display/c/MSC37-C.+Ensure+that+control+never+reaches+the+end+of+a+non-void+function
https://www.securecoding.cert.org/confluence/display/c/MSC37-C.+Ensure+that+control+never+reaches+the+end+of+a+non-void+function

5 View Results in the Polyspace Environment

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

reaches the
end of a non-
void function

MSC39-
C

Do not call
va_arg() on
a va_list
that has an
indeterminate
value

Invalid va_list argument

Non-initialized variable

Rule 50. POSIX (POS)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

POS33-
C

Do not use
vfork()

Use of obsolete standard

function

POS35-
C

Avoid race
conditions
while checking
for the
existence of a
symbolic link

File access between

time of check and use

(TOCTOU)

POS36-
C

Observe
correct
revocation
order while
relinquishing
privileges

Bad order of dropping

privileges

POS37-
C

Ensure that
privilege
relinquishment
is successful

Privilege drop not

verified

POS49-
C

When data
must be
accessed
by multiple
threads,
provide a

Data race

5-92

https://www.securecoding.cert.org/confluence/display/c/MSC39-C.+Do+not+call+va_arg%28%29+on+a+va_list+that+has+an+indeterminate+value
https://www.securecoding.cert.org/confluence/display/c/MSC39-C.+Do+not+call+va_arg%28%29+on+a+va_list+that+has+an+indeterminate+value
https://www.securecoding.cert.org/confluence/x/EgAa
https://www.securecoding.cert.org/confluence/x/EgAa
https://www.securecoding.cert.org/confluence/x/ZgAI
https://www.securecoding.cert.org/confluence/x/ZgAI
https://www.securecoding.cert.org/confluence/x/dgL7
https://www.securecoding.cert.org/confluence/x/dgL7
https://www.securecoding.cert.org/confluence/x/WIAAAQ
https://www.securecoding.cert.org/confluence/x/WIAAAQ
https://www.securecoding.cert.org/confluence/x/eoBcBQ
https://www.securecoding.cert.org/confluence/x/eoBcBQ

 Mapping Between CERT C Standards and Polyspace Results

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

mutex and
guarantee
no adjacent
data is also
accessed

POS51-
C

Avoid deadlock
with POSIX
threads by
locking in
predefined
order

Deadlock

POS54-
C

Detect and
handle POSIX
library errors

Returned value of a

sensitive function not

checked

CERT C Recommendations

The following tables list the CERT C recommendations that Polyspace Bug Finder
addresses and the corresponding defects.

Rec. 01. Preprocessor (PRE)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

PRE00-
C

Prefer inline
or static
functions to
function-like
macros

 MISRA C:2012 Directive

4.9

PRE01-
C

Use
parenthesis
within macros
around
parameter
names

 MISRA C:2012 Rule 20.7

PRE06-
C

Enclose
header files in

 MISRA C:2012 Directive

4.10

5-93

https://www.securecoding.cert.org/confluence/x/roBcBQ
https://www.securecoding.cert.org/confluence/x/roBcBQ
https://www.securecoding.cert.org/confluence/x/iIBfBw
https://www.securecoding.cert.org/confluence/x/iIBfBw
https://www.securecoding.cert.org/confluence/display/c/PRE00-C.+Prefer+inline+or+static+functions+to+function-like+macros
https://www.securecoding.cert.org/confluence/display/c/PRE00-C.+Prefer+inline+or+static+functions+to+function-like+macros
https://www.securecoding.cert.org/confluence/display/c/PRE01-C.+Use+parentheses+within+macros+around+parameter+names
https://www.securecoding.cert.org/confluence/display/c/PRE01-C.+Use+parentheses+within+macros+around+parameter+names
https://www.securecoding.cert.org/confluence/display/c/PRE06-C.+Enclose+header+files+in+an+inclusion+guard
https://www.securecoding.cert.org/confluence/display/c/PRE06-C.+Enclose+header+files+in+an+inclusion+guard

5 View Results in the Polyspace Environment

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

an inclusion
guard

PRE07-
C

Avoid using
repeated
question
marks

 MISRA C:2012 Rule 4.2

PRE09-
C

Do not
replace secure
functions with
deprecated or
obsolescent
functions

Use of dangerous

standard function

Rec. 02. Declarations and Initialization (DCL)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

DCL01-
C

Do not reuse
variable
names in
subscopes

Variable shadowing MISRA C:2012 Rule 5.3

DCL02-
C

Use visually
distinct
identifiers

 MISRA C:2012 Directive

4.5

DCL06-
C

Use
meaningful
symbolic
constants
to represent
literal values

Hard coded buffer size

Hard coded loop boundary

DCL07-
C

Include the
appropriate
type
information
in function
declarators

 MISRA C:2012 Rule 8.2

MISRA C:2012 Rule 11.1

5-94

https://www.securecoding.cert.org/confluence/display/c/PRE07-C.+Avoid+using+repeated+question+marks
https://www.securecoding.cert.org/confluence/display/c/PRE07-C.+Avoid+using+repeated+question+marks
https://www.securecoding.cert.org/confluence/display/c/PRE09-C.+Do+not+replace+secure+functions+with+deprecated+or+obsolescent+functions
https://www.securecoding.cert.org/confluence/display/c/PRE09-C.+Do+not+replace+secure+functions+with+deprecated+or+obsolescent+functions
https://www.securecoding.cert.org/confluence/display/c/DCL01-C.+Do+not+reuse+variable+names+in+subscopes
https://www.securecoding.cert.org/confluence/display/c/DCL01-C.+Do+not+reuse+variable+names+in+subscopes
https://www.securecoding.cert.org/confluence/display/c/DCL02-C.+Use+visually+distinct+identifiers
https://www.securecoding.cert.org/confluence/display/c/DCL02-C.+Use+visually+distinct+identifiers
https://www.securecoding.cert.org/confluence/display/c/DCL06-C.+Use+meaningful+symbolic+constants+to+represent+literal+values
https://www.securecoding.cert.org/confluence/display/c/DCL06-C.+Use+meaningful+symbolic+constants+to+represent+literal+values
https://www.securecoding.cert.org/confluence/display/c/DCL07-C.+Include+the+appropriate+type+information+in+function+declarators
https://www.securecoding.cert.org/confluence/display/c/DCL07-C.+Include+the+appropriate+type+information+in+function+declarators

 Mapping Between CERT C Standards and Polyspace Results

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

DCL10-
C

Maintain
the contract
between
the writer
and caller
of variadic
functions

Format string specifiers

and arguments mismatch

MISRA C:2012 Rule 17.1

DCL11-
C

Understand
the type issues
associated
with variadic
functions

Format string specifiers

and arguments mismatch

MISRA C:2012 Rule 17.1

DCL13-
C

Declare
function
parameters
that are
pointers to
values not
changed by
the function as
const

 MISRA C:2012 Rule 8.13

DCL15-
C

Declare file-
scope objects
or functions
that do not
need external
linkage as
static

 MISRA C:2012 Rule 8.7

MISRA C:2012 Rule 8.8

DCL16-
C

Use "L", not
"l" to indicate
a long value

 MISRA C:2012 Rule 7.3

DCL18-
C

Do not begin
integer
constants
with 0 when

 MISRA C:2012 Rule 7.1

5-95

https://www.securecoding.cert.org/confluence/display/c/DCL10-C.+Maintain+the+contract+between+the+writer+and+caller+of+variadic+functions
https://www.securecoding.cert.org/confluence/display/c/DCL10-C.+Maintain+the+contract+between+the+writer+and+caller+of+variadic+functions
https://www.securecoding.cert.org/confluence/display/c/DCL11-C.+Understand+the+type+issues+associated+with+variadic+functions
https://www.securecoding.cert.org/confluence/display/c/DCL11-C.+Understand+the+type+issues+associated+with+variadic+functions
https://www.securecoding.cert.org/confluence/display/c/DCL13-C.+Declare+function+parameters+that+are+pointers+to+values+not+changed+by+the+function+as+const
https://www.securecoding.cert.org/confluence/display/c/DCL13-C.+Declare+function+parameters+that+are+pointers+to+values+not+changed+by+the+function+as+const
https://www.securecoding.cert.org/confluence/display/c/DCL15-C.+Declare+file-scope+objects+or+functions+that+do+not+need+external+linkage+as+static
https://www.securecoding.cert.org/confluence/display/c/DCL15-C.+Declare+file-scope+objects+or+functions+that+do+not+need+external+linkage+as+static
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=19759250
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=19759250
https://www.securecoding.cert.org/confluence/display/c/DCL18-C.+Do+not+begin+integer+constants+with+0+when+specifying+a+decimal+value
https://www.securecoding.cert.org/confluence/display/c/DCL18-C.+Do+not+begin+integer+constants+with+0+when+specifying+a+decimal+value

5 View Results in the Polyspace Environment

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

specifying a
decimal value

DCL19-
C

Minimize
the scope of
variables and
functions

 MISRA C:2012 Rule 8.7

MISRA C:2012 Rule 8.9

DCL20-
C

Explicitly
specify
void when
a function
accepts no
arguments

 MISRA C:2012 Rule 8.2

DCL22-
C

Use volatile
for data that
cannot be
cached

Write without a further

read

MISRA C:2012 Rule 2.2

DCL23-
C

Guarantee
that mutually
visible
identifiers are
unique

 MISRA C:2012 Rule 5.1

MISRA C:2012 Rule 5.2

MISRA C:2012 Rule 5.3

MISRA C:2012 Rule 5.4

MISRA C:2012 Rule 5.5

Rec. 03. Expressions (EXP)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

EXP00-
C

Use
parentheses
for precedence
of operation

Possibly unintended

evaluation of expression

because of operator

precedence rules

MISRA C:2012 Rule 12.1

EXP05-
C

Do not cast
away a const
qualification

Qualifier removed in

conversion

MISRA C:2012 Rule 11.8

5-96

https://www.securecoding.cert.org/confluence/display/c/DCL19-C.+Minimize+the+scope+of+variables+and+functions
https://www.securecoding.cert.org/confluence/display/c/DCL19-C.+Minimize+the+scope+of+variables+and+functions
https://www.securecoding.cert.org/confluence/display/c/DCL20-C.+Explicitly+specify+void+when+a+function+accepts+no+arguments
https://www.securecoding.cert.org/confluence/display/c/DCL20-C.+Explicitly+specify+void+when+a+function+accepts+no+arguments
https://www.securecoding.cert.org/confluence/display/c/DCL22-C.+Use+volatile+for+data+that+cannot+be+cached
https://www.securecoding.cert.org/confluence/display/c/DCL22-C.+Use+volatile+for+data+that+cannot+be+cached
https://www.securecoding.cert.org/confluence/display/c/DCL23-C.+Guarantee+that+mutually+visible+identifiers+are+unique
https://www.securecoding.cert.org/confluence/display/c/DCL23-C.+Guarantee+that+mutually+visible+identifiers+are+unique
https://www.securecoding.cert.org/confluence/display/c/EXP00-C.+Use+parentheses+for+precedence+of+operation
https://www.securecoding.cert.org/confluence/display/c/EXP00-C.+Use+parentheses+for+precedence+of+operation
https://www.securecoding.cert.org/confluence/display/c/EXP00-C.+Use+parentheses+for+precedence+of+operation
https://www.securecoding.cert.org/confluence/display/c/EXP00-C.+Use+parentheses+for+precedence+of+operation

 Mapping Between CERT C Standards and Polyspace Results

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

EXP08-
C

Ensure pointer
arithmetic is
used correctly

Incorrect pointer

scaling

Pointer access out of

bounds

MISRA C:2012 Rule 18.1

MISRA C:2012 Rule 18.2

MISRA C:2012 Rule 18.3

EXP09-
C

Use sizeof to
determine the
size of a type
or variable

Hard-coded object size

used to manipulate

memory

EXP10-
C

Do not depend
on the order of
evaluation of
subexpressions
or the order
in which side
effects take
place

 MISRA C:2012 Rule 13.2

EXP12-
C

Do not
ignore values
returned by
functions

Returned value of a

sensitive function not

checked

EXP13-
C

Treat
relational
and equality
operators as
if they were
nonassociative

Possibly unintended

evaluation of expression

because of operator

precedence rules

EXP19-
C

Use braces for
the body of an
if, for, or while
statement

 MISRA C:2012 Rule 15.6

Rec. 04. Integers (INT)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

INT00-
C

Understand
the data model

Integer overflow

5-97

https://www.securecoding.cert.org/confluence/display/c/EXP08-C.+Ensure+pointer+arithmetic+is+used+correctly
https://www.securecoding.cert.org/confluence/display/c/EXP08-C.+Ensure+pointer+arithmetic+is+used+correctly
https://www.securecoding.cert.org/confluence/x/eAAV
https://www.securecoding.cert.org/confluence/x/eAAV
https://www.securecoding.cert.org/confluence/display/c/EXP10-C.+Do+not+depend+on+the+order+of+evaluation+of+subexpressions+or+the+order+in+which+side+effects+take+place
https://www.securecoding.cert.org/confluence/display/c/EXP10-C.+Do+not+depend+on+the+order+of+evaluation+of+subexpressions+or+the+order+in+which+side+effects+take+place
https://www.securecoding.cert.org/confluence/x/9YIRAQ
https://www.securecoding.cert.org/confluence/x/9YIRAQ
https://www.securecoding.cert.org/confluence/display/c/EXP13-C.+Treat+relational+and+equality+operators+as+if+they+were+nonassociative
https://www.securecoding.cert.org/confluence/display/c/EXP13-C.+Treat+relational+and+equality+operators+as+if+they+were+nonassociative
https://www.securecoding.cert.org/confluence/display/c/EXP19-C.+Use+braces+for+the+body+of+an+if%2C+for%2C+or+while+statement
https://www.securecoding.cert.org/confluence/display/c/EXP19-C.+Use+braces+for+the+body+of+an+if%2C+for%2C+or+while+statement
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4374
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=4374

5 View Results in the Polyspace Environment

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

used by your
implementation(s)

INT02-
C

Understand
integer
conversion
rules

Integer conversion

overflow

Integer overflow

Tainted sign change

conversion

MISRA C:2012 Rule 10.1

MISRA C:2012 Rule 10.3

MISRA C:2012 Rule 10.4

MISRA C:2012 Rule 10.6

MISRA C:2012 Rule 10.7

MISRA C:2012 Rule 10.8

INT04-
C

Enforce
limits on
integer values
originating
from tainted
sources

Loop bounded with

tainted value

Memory allocation with

tainted size

Tainted size of variable

length array

INT04-
C

INT07-
C

Use only
explicitly
signed or
unsigned
char type
for numeric
values

Use of plain char type

for numerical value

MISRA C:2012 Rule 10.1

MISRA C:2012 Rule 10.3

MISRA C:2012 Rule 10.4

INT08-
C

Verify that all
integer values
are in range

Integer overflow

INT09-
C

Ensure
enumeration
constants

 MISRA C:2012 Rule 8.12

5-98

https://www.securecoding.cert.org/confluence/display/c/INT02-C.+Understand+integer+conversion+rules
https://www.securecoding.cert.org/confluence/display/c/INT02-C.+Understand+integer+conversion+rules
https://www.securecoding.cert.org/confluence/display/c/INT04-C.+Enforce+limits+on+integer+values+originating+from+tainted+sources
https://www.securecoding.cert.org/confluence/display/c/INT04-C.+Enforce+limits+on+integer+values+originating+from+tainted+sources
https://www.securecoding.cert.org/confluence/display/c/INT04-C.+Enforce+limits+on+integer+values+originating+from+tainted+sources
https://www.securecoding.cert.org/confluence/display/c/INT04-C.+Enforce+limits+on+integer+values+originating+from+tainted+sources
https://www.securecoding.cert.org/confluence/display/c/INT07-C.+Use+only+explicitly+signed+or+unsigned+char+type+for+numeric+values
https://www.securecoding.cert.org/confluence/display/c/INT07-C.+Use+only+explicitly+signed+or+unsigned+char+type+for+numeric+values
https://www.securecoding.cert.org/confluence/display/c/INT08-C.+Verify+that+all+integer+values+are+in+range
https://www.securecoding.cert.org/confluence/display/c/INT08-C.+Verify+that+all+integer+values+are+in+range
https://www.securecoding.cert.org/confluence/display/c/INT09-C.+Ensure+enumeration+constants+map+to+unique+values
https://www.securecoding.cert.org/confluence/display/c/INT09-C.+Ensure+enumeration+constants+map+to+unique+values

 Mapping Between CERT C Standards and Polyspace Results

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

map to unique
values

INT10-
C

Do not assume
a positive
remainder
when using
the % operator

Tainted modulo operand

INT12-
C

Do not make
assumptions
about the type
of a plain int
bit-field when
used in an
expression

 MISRA C:2012 Rule 6.1

INT13-
C

Use bitwise
operators only
on unsigned
operands

Bitwise operation on

negative value

MISRA C:2012 Rule 10.1

INT14-
C

Avoid
performing
arithmetic
and bitwise
operations on
the same data

Bitwise and arithmetic

operation on the same

data

INT16-
C

Do not make
assumptions
about
representation
of signed
integers

 MISRA C:2012 Rule 10.1

INT18-
C

Evaluate
integer
expressions
in a larger
size before
comparing or

Integer conversion

overflow

Integer overflow

MISRA C:2012 Rule 10.4

MISRA C:2012 Rule 10.6

MISRA C:2012 Rule 10.7

5-99

https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6422581
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=6422581
https://www.securecoding.cert.org/confluence/display/c/INT12-C.+Do+not+make+assumptions+about+the+type+of+a+plain+int+bit-field+when+used+in+an+expression
https://www.securecoding.cert.org/confluence/display/c/INT12-C.+Do+not+make+assumptions+about+the+type+of+a+plain+int+bit-field+when+used+in+an+expression
https://www.securecoding.cert.org/confluence/display/c/INT13-C.+Use+bitwise+operators+only+on+unsigned+operands
https://www.securecoding.cert.org/confluence/display/c/INT13-C.+Use+bitwise+operators+only+on+unsigned+operands
https://www.securecoding.cert.org/confluence/x/dgAV
https://www.securecoding.cert.org/confluence/x/dgAV
https://www.securecoding.cert.org/confluence/display/c/INT16-C.+Do+not+make+assumptions+about+representation+of+signed+integers
https://www.securecoding.cert.org/confluence/display/c/INT16-C.+Do+not+make+assumptions+about+representation+of+signed+integers
https://www.securecoding.cert.org/confluence/display/c/INT18-C.+Evaluate+integer+expressions+in+a+larger+size+before+comparing+or+assigning+to+that+size
https://www.securecoding.cert.org/confluence/display/c/INT18-C.+Evaluate+integer+expressions+in+a+larger+size+before+comparing+or+assigning+to+that+size

5 View Results in the Polyspace Environment

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

assigning to
that size

Unsigned integer

conversion overflow

Unsigned integer

overflow

Rec. 05. Floating Point (FLP)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

FLP00-
C

Understand
the limitations
of floating-
point numbers

Absorption of float

operand

FLP03-
C

Detect and
handle
floating-point
errors

Float conversion

overflow

Float overflow

Invalid use of standard

library floating point

routine

Float division by zero

FLP06-
C

Convert
integers
to floating
point for
floating-point
operations

Float overflow MISRA C:2012 Rule 10.3

Rec. 06. Arrays (ARR)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

ARR00-
C

Understand
how arrays
work

Possible misuse of

sizeof

ARR01-
C

Do not apply
the sizeof

Possible misuse of

sizeof

5-100

https://www.securecoding.cert.org/confluence/x/VQIFAQ
https://www.securecoding.cert.org/confluence/x/VQIFAQ
https://www.securecoding.cert.org/confluence/x/4YHp
https://www.securecoding.cert.org/confluence/x/4YHp
https://www.securecoding.cert.org/confluence/x/YAAV
https://www.securecoding.cert.org/confluence/x/YAAV
https://www.securecoding.cert.org/confluence/x/FgH3
https://www.securecoding.cert.org/confluence/x/FgH3
https://www.securecoding.cert.org/confluence/x/6wE
https://www.securecoding.cert.org/confluence/x/6wE

 Mapping Between CERT C Standards and Polyspace Results

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

operator to a
pointer when
taking the size
of an array

ARR02-
C

Explicitly
specify array
bounds, even
if implicitly
defined by an
initializer

Improper array

initialization

MISRA C:2012 Rule 8.11

MISRA C:2012 Rule 9.5

Rec. 07. Characters and Strings (STR)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

STR02-
C

Sanitize
data passed
to complex
subsystems

Execution of externally

controlled command

Command executed from

externally controlled

path

Library loaded from

externally controlled

path

STR03-
C

Do not
inadvertently
truncate a
string

Buffer overflow from

incorrect string format

specifier

STR04-
C

Use plain char
for characters
in the basic
character set

 MISRA C:2012 Rule 10.1

MISRA C:2012 Rule 10.2

MISRA C:2012 Rule 10.3

MISRA C:2012 Rule 10.4

STR05-
C

Use pointers
to const when

Writing to const

qualified object

5-101

https://www.securecoding.cert.org/confluence/x/HQEOAQ
https://www.securecoding.cert.org/confluence/x/HQEOAQ
https://www.securecoding.cert.org/confluence/display/c/STR02-C.+Sanitize+data+passed+to+complex+subsystems
https://www.securecoding.cert.org/confluence/display/c/STR02-C.+Sanitize+data+passed+to+complex+subsystems
https://www.securecoding.cert.org/confluence/display/c/STR03-C.+Do+not+inadvertently+truncate+a+string
https://www.securecoding.cert.org/confluence/display/c/STR03-C.+Do+not+inadvertently+truncate+a+string
https://www.securecoding.cert.org/confluence/display/c/STR04-C.+Use+plain+char+for+characters+in+the+basic+character+set
https://www.securecoding.cert.org/confluence/display/c/STR04-C.+Use+plain+char+for+characters+in+the+basic+character+set
https://www.securecoding.cert.org/confluence/display/c/STR05-C.+Use+pointers+to+const+when+referring+to+string+literals
https://www.securecoding.cert.org/confluence/display/c/STR05-C.+Use+pointers+to+const+when+referring+to+string+literals

5 View Results in the Polyspace Environment

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

referring to
string literals

STR06-
C

Do not assume
strtok()
leaves the
parse string
unchanged

Modification of internal

buffer returned from

nonreentrant standard

function

Writing to const

qualified object

STR07-
C

Use the
bounds-
checking
interface
for string
manipulation

Use of dangerous

standard function

Destination buffer

overflow in string

manipulation

STR08-
C

Use managed
strings for
development
of new string
manipulation
code

Use of dangerous

standard function

Destination buffer

overflow in string

manipulation

STR11-
C

Do not specify
the bound of
a character
array
initialized
with a string
literal

Missing null in string

array

Rec. 08. Memory Management (MEM)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

MEM00-
C

Allocate and
free memory
in the same
module, at the

Invalid free of pointer

Deallocation of

previously deallocated

pointer

5-102

https://www.securecoding.cert.org/confluence/display/c/STR06-C.+Do+not+assume+that+strtok%28%29+leaves+the+parse+string+unchanged
https://www.securecoding.cert.org/confluence/display/c/STR06-C.+Do+not+assume+that+strtok%28%29+leaves+the+parse+string+unchanged
https://www.securecoding.cert.org/confluence/display/c/STR07-C.+Use+the+bounds-checking+interfaces+for+string+manipulation
https://www.securecoding.cert.org/confluence/display/c/STR07-C.+Use+the+bounds-checking+interfaces+for+string+manipulation
https://www.securecoding.cert.org/confluence/display/c/STR08-C.+Use+managed+strings+for+development+of+new+string+manipulation+code
https://www.securecoding.cert.org/confluence/display/c/STR08-C.+Use+managed+strings+for+development+of+new+string+manipulation+code
https://www.securecoding.cert.org/confluence/display/c/STR11-C.+Do+not+specify+the+bound+of+a+character+array+initialized+with+a+string+literal
https://www.securecoding.cert.org/confluence/display/c/STR11-C.+Do+not+specify+the+bound+of+a+character+array+initialized+with+a+string+literal
https://www.securecoding.cert.org/confluence/display/c/MEM00-C.+Allocate+and+free+memory+in+the+same+module%2C+at+the+same+level+of+abstraction
https://www.securecoding.cert.org/confluence/display/c/MEM00-C.+Allocate+and+free+memory+in+the+same+module%2C+at+the+same+level+of+abstraction

 Mapping Between CERT C Standards and Polyspace Results

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

same level of
abstraction

Use of previously freed

pointer

MEM01-
C

Store a new
value in
pointers
immediately
after free()

Missing reset of a freed

pointer

MEM02-
C

Immediately
cast the result
of a memory
allocation
function
call into a
pointer to the
allocated type

Wrong allocated object

size for cast

Wrong type used in

sizeof

MEM03-
C

Clear sensitive
information
stored in
reusable
resources

Sensitive heap memory

not cleared before

release

Uncleared sensitive data

in stack

MEM04-
C

Beware of
zero-length
allocations

Tainted sign change

conversion

Tainted size of variable

length array

Variable length array

with nonpositive size

MEM05-
C

Avoid
large stack
allocations

Tainted size of variable

length array

Variable length array

with nonpositive size

MISRA C:2012 Rule 17.2

MEM06-
C

Ensure that
sensitive data

Sensitive data printed

out

5-103

https://www.securecoding.cert.org/confluence/x/uAE
https://www.securecoding.cert.org/confluence/x/uAE
https://www.securecoding.cert.org/confluence/display/c/MEM02-C.+Immediately+cast+the+result+of+a+memory+allocation+function+call+into+a+pointer+to+the+allocated+type
https://www.securecoding.cert.org/confluence/display/c/MEM02-C.+Immediately+cast+the+result+of+a+memory+allocation+function+call+into+a+pointer+to+the+allocated+type
https://www.securecoding.cert.org/confluence/display/c/MEM03-C.+Clear+sensitive+information+stored+in+reusable+resources
https://www.securecoding.cert.org/confluence/display/c/MEM03-C.+Clear+sensitive+information+stored+in+reusable+resources
https://www.securecoding.cert.org/confluence/display/c/MEM04-C.+Beware+of+zero-length+allocations
https://www.securecoding.cert.org/confluence/display/c/MEM04-C.+Beware+of+zero-length+allocations
https://www.securecoding.cert.org/confluence/display/c/MEM05-C.+Avoid+large+stack+allocations
https://www.securecoding.cert.org/confluence/display/c/MEM05-C.+Avoid+large+stack+allocations
https://www.securecoding.cert.org/confluence/display/c/MEM06-C.+Ensure+that+sensitive+data+is+not+written+out+to+disk
https://www.securecoding.cert.org/confluence/display/c/MEM06-C.+Ensure+that+sensitive+data+is+not+written+out+to+disk

5 View Results in the Polyspace Environment

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

is not written
out to disk

MEM07-
C

Ensure that
arguments to
calloc(),
when
multiplied, do
not wrap

Memory allocation with

tainted size

MEM10-
C

Define and
use a pointer
validation
function

Memory allocation with

tainted size

Unprotected dynamic

memory allocation

Use of tainted pointer

MEM11-
C

Do not assume
infinite heap
space

Memory leak

Memory allocation with

tainted size

Tainted sign change

conversion

Unprotected dynamic

memory allocation

MEM12-
C

Consider a
goto chain
when leaving
a function on
error when
using and
releasing
resources

Memory leak

Missing unlock

Resource leak

Rec. 09. Input Output (FIO)

5-104

https://www.securecoding.cert.org/confluence/display/c/MEM07-C.+Ensure+that+the+arguments+to+calloc%28%29%2C+when+multiplied%2C+do+not+wrap
https://www.securecoding.cert.org/confluence/display/c/MEM07-C.+Ensure+that+the+arguments+to+calloc%28%29%2C+when+multiplied%2C+do+not+wrap
https://www.securecoding.cert.org/confluence/display/c/MEM10-C.+Define+and+use+a+pointer+validation+function
https://www.securecoding.cert.org/confluence/display/c/MEM10-C.+Define+and+use+a+pointer+validation+function
https://www.securecoding.cert.org/confluence/display/c/MEM11-C.+Do+not+assume+infinite+heap+space
https://www.securecoding.cert.org/confluence/display/c/MEM11-C.+Do+not+assume+infinite+heap+space
https://www.securecoding.cert.org/confluence/display/c/MEM12-C.+Consider+using+a+goto+chain+when+leaving+a+function+on+error+when+using+and+releasing+resources
https://www.securecoding.cert.org/confluence/display/c/MEM12-C.+Consider+using+a+goto+chain+when+leaving+a+function+on+error+when+using+and+releasing+resources

 Mapping Between CERT C Standards and Polyspace Results

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

FIO01-
C

Be careful
using
functions
that use file
names for
identification

File access between

time of check and use

(TOCTOU)

FIO02-
C

Canonicalize
path names
originating
from tainted
sources

Vulnerable path

manipulation

FIO03-
C

Do not make
assumptions
about fopen()
and file
creation

Use of non-secure

temporary file

FIO06-
C

Create
files with
appropriate
access
permissions

Umask used with chmod-

style arguments

Vulnerable permission

assignments

FIO11-
C

Take care
when
specifying
the mode
parameter of
fopen()

Bad file access mode or

status

FIO21-
C

Do not create
temporary
files in shared
directories

Use of non-secure

temporary file

FIO24-
C

Do not open
a file that is
already open

Opening previously

opened resource

Rec. 10. Environment (ENV)

5-105

https://www.securecoding.cert.org/confluence/display/c/FIO01-C.+Be+careful+using+functions+that+use+file+names+for+identification
https://www.securecoding.cert.org/confluence/display/c/FIO01-C.+Be+careful+using+functions+that+use+file+names+for+identification
https://www.securecoding.cert.org/confluence/display/c/FIO02-C.+Canonicalize+path+names+originating+from+tainted+sources
https://www.securecoding.cert.org/confluence/display/c/FIO02-C.+Canonicalize+path+names+originating+from+tainted+sources
https://www.securecoding.cert.org/confluence/display/c/FIO03-C.+Do+not+make+assumptions+about+fopen%28%29+and+file+creation
https://www.securecoding.cert.org/confluence/display/c/FIO03-C.+Do+not+make+assumptions+about+fopen%28%29+and+file+creation
https://www.securecoding.cert.org/confluence/display/c/FIO06-C.+Create+files+with+appropriate+access+permissions
https://www.securecoding.cert.org/confluence/display/c/FIO06-C.+Create+files+with+appropriate+access+permissions
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473587
https://www.securecoding.cert.org/confluence/pages/viewpage.action?pageId=3473587
https://www.securecoding.cert.org/confluence/display/c/FIO21-C.+Do+not+create+temporary+files+in+shared+directories
https://www.securecoding.cert.org/confluence/display/c/FIO21-C.+Do+not+create+temporary+files+in+shared+directories
https://www.securecoding.cert.org/confluence/x/pwA1
https://www.securecoding.cert.org/confluence/x/pwA1

5 View Results in the Polyspace Environment

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

ENV01-
C

Do not make
assumptions
about the
size of an
environment
variable

Destination buffer

overflow in string

manipulation

Tainted NULL or non-

null-terminated string

Use of dangerous

standard function

Rec. 12. Error Handling (ERR)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

ERR00-
C

Adopt and
implement a
consistent and
comprehensive
error-handling
policy

 MISRA C:2012 Rule 17.1

Rec. 13. Application Programming Interfaces (API)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

API00-
C

Functions
should
validate their
parameters

Invalid use of standard

library memory routine

Invalid use of standard

library routine

Invalid use of standard

library string routine

Standard function call

with incorrect arguments

“Tainted Data Defects”

API02-
C

Functions
that read or
write to or

Array access out of

bounds

5-106

https://www.securecoding.cert.org/confluence/display/c/ENV01-C.+Do+not+make+assumptions+about+the+size+of+an+environment+variable
https://www.securecoding.cert.org/confluence/display/c/ENV01-C.+Do+not+make+assumptions+about+the+size+of+an+environment+variable
https://www.securecoding.cert.org/confluence/display/c/ERR00-C.+Adopt+and+implement+a+consistent+and+comprehensive+error-handling+policy
https://www.securecoding.cert.org/confluence/display/c/ERR00-C.+Adopt+and+implement+a+consistent+and+comprehensive+error-handling+policy
https://www.securecoding.cert.org/confluence/display/c/API00-C.+Functions+should+validate+their+parameters
https://www.securecoding.cert.org/confluence/display/c/API00-C.+Functions+should+validate+their+parameters
https://www.securecoding.cert.org/confluence/display/c/API02-C.+Functions+that+read+or+write+to+or+from+an+array+should+take+an+argument+to+specify+the+source+or+target+size
https://www.securecoding.cert.org/confluence/display/c/API02-C.+Functions+that+read+or+write+to+or+from+an+array+should+take+an+argument+to+specify+the+source+or+target+size

 Mapping Between CERT C Standards and Polyspace Results

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

from an array
should take
an argument
to specify
the source or
target size

Array access with

tainted index

Pointer access out of

bounds

Use of dangerous

standard function

Use of tainted pointer

API03-
C

Create
consistent
interfaces and
capabilities
across related
functions

 MISRA C:2012 Rule 21.3

Rec. 14. Concurrency (CON)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

CON00-
C

Avoid race
conditions
with multiple
threads

Data raceData race

including atomic

operations

CON01-
C

Acquire
and release
synchronization
primitives
in the same
module, at the
same level of
abstraction

Missing lock

CON09-
C

Avoid the ABA
problem when
using lock-free
algorithms

Data race

Rec. 48. Miscellaneous (MSC)

5-107

https://www.securecoding.cert.org/confluence/display/c/API03-C.+Create+consistent+interfaces+and+capabilities+across+related+functions
https://www.securecoding.cert.org/confluence/display/c/API03-C.+Create+consistent+interfaces+and+capabilities+across+related+functions
https://www.securecoding.cert.org/confluence/display/c/CON00-C.+Avoid+race+conditions+with+multiple+threads
https://www.securecoding.cert.org/confluence/display/c/CON00-C.+Avoid+race+conditions+with+multiple+threads
https://www.securecoding.cert.org/confluence/display/c/CON01-C.+Acquire+and+release+synchronization+primitives+in+the+same+module%2C+at+the+same+level+of+abstraction
https://www.securecoding.cert.org/confluence/display/c/CON01-C.+Acquire+and+release+synchronization+primitives+in+the+same+module%2C+at+the+same+level+of+abstraction
https://www.securecoding.cert.org/confluence/display/c/CON09-C.+Avoid+the+ABA+problem+when+using+lock-free+algorithms
https://www.securecoding.cert.org/confluence/display/c/CON09-C.+Avoid+the+ABA+problem+when+using+lock-free+algorithms

5 View Results in the Polyspace Environment

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

MSC01-
C

Strive for
logical
completeness

Dead code

Missing case for switch

condition

Unreachable code

MSC04-
C

Use comments
consistently
and in a
readable
fashion

 MISRA C:2012 Rule 1.2

MISRA C:2012 Rule 3.1

MSC07-
C

Detect and
remove dead
code

Dead code

Missing case for switch

condition

Unreachable code

MISRA C:2012 Rule 2.1

MSC12-
C

Detect and
remove code
that has no
effect or is
never executed

Dead code

Unreachable code

Use of memset with size

argument zero

MISRA C:2012 Rule 2.1

MISRA C:2012 Rule 2.2

MSC13-
C

Detect and
remove
unused values

Unused parameter

Write without a further

read

MSC15-
C

Do not depend
on undefined
behavior

Array access out of

bounds

Copy of overlapping

memory

Declaration mismatch

Format string specifiers

and arguments mismatch

5-108

https://www.securecoding.cert.org/confluence/display/c/MSC01-C.+Strive+for+logical+completeness
https://www.securecoding.cert.org/confluence/display/c/MSC01-C.+Strive+for+logical+completeness
https://www.securecoding.cert.org/confluence/display/c/MSC04-C.+Use+comments+consistently+and+in+a+readable+fashion
https://www.securecoding.cert.org/confluence/display/c/MSC04-C.+Use+comments+consistently+and+in+a+readable+fashion
https://www.securecoding.cert.org/confluence/display/c/MSC07-C.+Detect+and+remove+dead+code
https://www.securecoding.cert.org/confluence/display/c/MSC07-C.+Detect+and+remove+dead+code
https://www.securecoding.cert.org/confluence/display/c/MSC12-C.+Detect+and+remove+code+that+has+no+effect+or+is+never+executed
https://www.securecoding.cert.org/confluence/display/c/MSC12-C.+Detect+and+remove+code+that+has+no+effect+or+is+never+executed
https://www.securecoding.cert.org/confluence/display/c/MSC13-C.+Detect+and+remove+unused+values
https://www.securecoding.cert.org/confluence/display/c/MSC13-C.+Detect+and+remove+unused+values
https://www.securecoding.cert.org/confluence/x/EoLu
https://www.securecoding.cert.org/confluence/x/EoLu

 Mapping Between CERT C Standards and Polyspace Results

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

Integer overflow

Invalid use of standard

library memory routine

Invalid use of standard

library routine

Invalid use of standard

library string routine

Non-initialized pointer

Non-initialized variable

Null pointer

Overlapping assignment

Pointer access out of

bounds

Standard function call

with incorrect arguments

Unreliable cast of

function pointer

Unreliable cast of

pointer

Use of tainted pointer

Writing to const

qualified object

MSC17-
C

Finish
every set of
statements
associated
with a case

Missing break of switch

case

5-109

https://www.securecoding.cert.org/confluence/x/YIFLAQ
https://www.securecoding.cert.org/confluence/x/YIFLAQ

5 View Results in the Polyspace Environment

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

label with
a break
statement

MSC18-
C

Be careful
while handling
sensitive
data, such as
passwords, in
program code

Sensitive heap memory

not cleared before

release

Uncleared sensitive data

in stack

Unsafe standard

encryption function

MSC20-
C

 MISRA C:2012 Rule 16.2

MSC21-
C

Use robust
loop
termination
conditions

Loop bounded with

tainted value

Tainted sign change

conversion

MSC22-
C

Use the
setjmp(),
longjmp()
facility
securely

Use of setjmp/longjmp

MSC24-
C

Do not use
deprecated or
obsolescent
functions

Use of obsolete standard

function

Rec. 05. POSIX (POS)

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

POS05-
C

Limit access
to files by
creating a jail

File manipulation

after chroot() without

chdir("/")

Rec. 05. Microsoft Windows (WIN)

5-110

https://www.securecoding.cert.org/confluence/display/c/MSC18-C.+Be+careful+while+handling+sensitive+data%2C+such+as+passwords%2C+in+program+code
https://www.securecoding.cert.org/confluence/display/c/MSC18-C.+Be+careful+while+handling+sensitive+data%2C+such+as+passwords%2C+in+program+code
https://www.securecoding.cert.org/confluence/display/c/MSC20-C.+Do+not+use+a+switch+statement+to+transfer+control+into+a+complex+block
https://www.securecoding.cert.org/confluence/display/c/MSC20-C.+Do+not+use+a+switch+statement+to+transfer+control+into+a+complex+block
https://www.securecoding.cert.org/confluence/display/c/MSC21-C.+Use+robust+loop+termination+conditions
https://www.securecoding.cert.org/confluence/display/c/MSC21-C.+Use+robust+loop+termination+conditions
https://www.securecoding.cert.org/confluence/display/c/MSC22-C.+Use+the+setjmp%28%29%2C+longjmp%28%29+facility+securely
https://www.securecoding.cert.org/confluence/display/c/MSC22-C.+Use+the+setjmp%28%29%2C+longjmp%28%29+facility+securely
https://www.securecoding.cert.org/confluence/display/c/MSC24-C.+Do+not+use+deprecated+or+obsolescent+functions
https://www.securecoding.cert.org/confluence/display/c/MSC24-C.+Do+not+use+deprecated+or+obsolescent+functions
https://www.securecoding.cert.org/confluence/display/c/POS05-C.+Limit+access+to+files+by+creating+a+jail
https://www.securecoding.cert.org/confluence/display/c/POS05-C.+Limit+access+to+files+by+creating+a+jail

 Mapping Between CERT C Standards and Polyspace Results

CERT C Description Polyspace Bug Finder Defect MISRA C: 2012 Rule

WIN00-
C

Be specific
when
dynamically
loading
libraries

Library loaded from

externally controlled

path

Load of library from

a relative path can

be controlled by an

external actor

Differences Between CERT C Standards and Defects

Despite the mapping, if you do not see a Bug Finder defect in a noncompliant example on
the CERT C document, it might be because:

• The Bug Finder defect covers only a certain aspect of the CERT C rule or
recommendation. Your code can violate a rule or recommendation in multiple ways,
but a specific defect covers a specific violation pattern.

From the name of the Bug Finder defect and the description, you can understand
which aspect of the rule or recommendation is covered by the defect.

• In certain cases, Bug Finder issues a defect only if a run-time error can occur due to
not following a rule or recommendation. Not following the rule or recommendation
alone does not trigger the defect.

For instance, in the following noncompliant code example from the CERT-C
documentation on ARR30-C (Do not form or use out-of-bounds pointers or array
subscripts), the array index is not checked for negative values.

enum { TABLESIZE = 100 };

static int table[TABLESIZE];

int *f(int index) {

 if (index < TABLESIZE) {

 return table + index;

 }

 return NULL;

}

If you analyze this example, Polyspace Bug Finder does not show the defect Array
access out of bounds or Pointer access out of bounds because the array index is

5-111

https://www.securecoding.cert.org/confluence/display/c/WIN00-C.+Be+specific+when+dynamically+loading+libraries
https://www.securecoding.cert.org/confluence/display/c/WIN00-C.+Be+specific+when+dynamically+loading+libraries
https://www.securecoding.cert.org/confluence/display/c/ARR30-C.+Do+not+form+or+use+out-of-bounds+pointers+or+array+subscripts

5 View Results in the Polyspace Environment

not used to access the array. The return value table + index is not used anywhere
in the code.

You can see the defect if you use the return value table + index. For instance, if
the code contains the following call to the function f with a negative value, the defect
appears when the return value of f is dereferenced.

int main () {

 int *p = f(-2);

 return *p;

}

5-112

6

Command-Line Analysis

• “Create Project Automatically at Command Line” on page 6-2
• “Run Local Analysis from DOS or UNIX Command Line” on page 6-4
• “Run Remote Analysis at the Command Line” on page 6-6
• “Create Command-Line Script from Project File” on page 6-10
• “Create Project Automatically from MATLAB Command Line” on page 6-12
• “Run Polyspace in MATLAB” on page 6-14

6 Command-Line Analysis

Create Project Automatically at Command Line
If you use build automation scripts to build your source code, you can automatically setup
a Polyspace project from your scripts. The automatic project setup runs your automation
scripts to determine:

• Source files.
• Includes.
• Target & compiler options. For more information on these options, see “Target &

Compiler”.

Use the polyspace-configure command to trace your build automation scripts. You
can use the trace information to:

• Create a Polyspace project. You can then open the project in the user interface.

Example: If you use the command make targetName buildOptions to
build your source code, use the following command to create a Polyspace project
myProject.psprj from your makefile:

polyspace-configure -prog myProject make targetName buildOptions

For the list of options allowed with the GNU make, see make options.
• Create an options file. You can then use the options file to run analysis on your source

code from the command-line.

Example: If you use the command make targetName buildOptions to build your
source code, use the following commands to create an options file myOptions from
your makefile:

polyspace-configure -no-project -output-options-file myOptions ...

 make targetName buildOptions

Use the options file to run analysis:

polyspace-bug-finder-nodesktop -options-file myOptions

You can also use advanced options to modify the default behavior of polyspace-
configure. For more information, see the -options value argument for
polyspaceConfigure.

Note:

6-2

https://www.gnu.org/software/make/manual/html_node/Options-Summary.html

 Create Project Automatically at Command Line

• In the Polyspace interface, it is possible that the created project will not show implicit
defines or includes. The configuration tool does include them. However, they are not
visible.

• By default, Polyspace assigns the latest version of the compiler to your project. If you
have compilation errors in your project, check the setting for Compiler (-compiler). If
it does not apply to you, change it to a more appropriate one.
For instance, if the compiler setting is visual12 but you are using Microsoft Visual C
++ 2010, change the setting to visual10.

• If your build process requires user interaction, you cannot run the build command
from the Polyspace user interface and do an automatic project setup.

More About
• “Requirements for Project Creation from Build Systems” on page 1-9
• “Compiler Not Supported for Project Creation from Build Systems” on page

17-41
• “Slow Build Process When Polyspace Traces the Build” on page 17-49
• “Check if Polyspace Supports Windows Build Command” on page 17-50

6-3

6 Command-Line Analysis

Run Local Analysis from DOS or UNIX Command Line
To run an analysis from a DOS or UNIX command window, use the command
polyspace-bug-finder-nodesktop followed by other options you wish to use.

Note: To run Bug Finder from the MATLAB Command Window, use the command
polyspaceBugFinder [options]

In this section...

“Specify Sources and Analysis Options Directly” on page 6-4
“Specify Sources and Analysis Options in Text File” on page 6-4
“Create Options File from Build System” on page 6-5

Specify Sources and Analysis Options Directly

At the Windows, Linux or Mac OS X command-line, append sources and analysis options
to the polyspace-bug-finder-nodesktop command.

For instance:

• To specify the target processor, use the -target option. For instance, to specify the
m68k processor for your source file file.c, use the command:

polyspace-bug-finder-nodesktop -sources "file.c" -lang c -target m68k

• To check for violation of MISRA C rules, use the -misra2 option. For instance,
to check for only the required MISRA C rules on your source file file.c, use the
command:

polyspace-bug-finder-nodesktop -sources "file.c" -misra2 required-rules

For the full list of analysis options, see “Analysis Options”.

You can also enter the following at the command line:

polyspace-bug-finder-nodesktop -help

Specify Sources and Analysis Options in Text File

1 Create an options file called listofoptions.txt with your options. For example:

6-4

 Run Local Analysis from DOS or UNIX Command Line

#These are the options for MyBugFinderProject

-lang c

-prog MyBugFinderProject

-author jsmith

-sources "mymain.c,funAlgebra.c,funGeometry.c"

-OS-target no-predefined-OS

-target x86_64

-compiler none

-dos

-misra2 required-rules

-do-not-generate-results-for all-headers

-checkers default

-disable-checkers concurrency

-results-dir C:\Polyspace\MyBugFinderProject

2 Run Polyspace using options in the file listofoptions.txt.

polyspace-bug-finder-nodesktop -options-file listofoptions.txt

Create Options File from Build System

1 Create a list of Polyspace options using the configuration tool.

polyspace-configure -c -no-project -output-options-file \

 myOptions make -B myCode

2 Run Polyspace Bug Finder using the options read from your build.

polyspace-bug-finder-nodesktop -options-file myOptions \

 -results-dir myResults

3 Open the results in the Bug Finder interface.

polyspace-bug-finder myResults

6-5

6 Command-Line Analysis

Run Remote Analysis at the Command Line

Before you run a remote analysis, you must set up a server for this purpose. For more
information, see “Set Up Server for Metrics and Remote Analysis”.

In this section...

“Run Remote Analysis” on page 6-6
“Manage Remote Analysis” on page 6-7

Run Remote Analysis

Use the following command to run a remote analysis:

matlabroot\polyspace\bin\polyspace-bug-finder-nodesktop

-batch -scheduler NodeHost | MJSName@NodeHost [options]

where:

• matlabroot is your MATLAB installation folder.
• NodeHost is the name of the computer that hosts the head node of your MATLAB

Distributed Computing Server™ cluster.
• MJSName is the name of the MATLAB Job Scheduler (MJS) on the head node host.
• options are the analysis options. These options are the same as that of a local

analysis. For more information, see “Run Local Analysis from DOS or UNIX
Command Line” on page 6-4.

After compilation, the software submits the analysis job to the cluster and provides you
a job ID. Use the polyspace-jobs-manager command with the job ID to monitor your
analysis and download results after analysis is complete. For more information, see
“Manage Remote Analysis” on page 6-7.

If the analysis stops after compilation and you have to restart the analysis, to avoid
restarting from the compilation phase, use the option -submit-job-from-previous-
compilation-results.

Tip In Windows, to avoid typing the commands each time, you can save the commands in
a batch file. In Linux, you can relaunch the analysis using a .sh file.

6-6

 Run Remote Analysis at the Command Line

1 Save your analysis options in a file listofoptions.txt. See “Specify Sources and
Analysis Options in Text File” on page 6-4.
To specify your sources, in the options file, instead of -sources, use -sources-list-
file. This option is available only for remote analysis and allows you to specify your
sources in a separate text file.

2 Create a file launcher.bat in a text editor like Notepad.
3 Enter the following commands in the file.

echo off

set POLYSPACE_PATH=C:\Program Files\MATLAB\R2015a\polyspace\bin

set RESULTS_PATH=C:\Results

set OPTIONS_FILE=C:\Options\listofoptions.txt

"%POLYSPACE_PATH%\polyspace-bug-finder-nodesktop.exe" -batch -scheduler localhost

 -results-dir "%RESULTS_PATH%" -options-file "%OPTIONS_FILE%"

pause

4 Replace the definitions of the following variables in the file:
• POLYSPACE_PATH: Enter the actual location of the .exe file.
• RESULTS_PATH: Enter the path to a folder. The files generated during

compilation are saved in the folder.
• OPTIONS_FILE: Enter the path to the file listofoptions.txt.
Replace localhost with the name of the computer that hosts the head node of your
MATLAB Distributed Computing Server cluster.

5 Double-click launcher.bat to run the analysis.

If you run a Polyspace analysis, a Windows .bat or Linux .sh file is automatically
generated for you. The file is in the .settings subfolder in your results folder. You can
relaunch the analysis using this file.

Manage Remote Analysis

To manage remote analyses, use this command:

matlabroot\polyspace\bin\polyspace-jobs-manager action [options]

 [-scheduler schedulerOption]

where:

• matlabroot is your MATLAB installation folder

6-7

6 Command-Line Analysis

• schedulerOption is one of the following:

• Name of the computer that hosts the head node of your MATLAB Distributed
Computing Server cluster (NodeHost).

• Name of the MJS on the head node host (MJSName@NodeHost).
• Name of a MATLAB cluster profile (ClusterProfile).

For more information about clusters, see “Clusters and Cluster Profiles”

If you do not specify a job scheduler, polyspace-job-manager uses the scheduler
specified in the Polyspace Preferences > Server Configuration > Job scheduler
host name.

• action [options] refer to the possible action commands to manage jobs on the
scheduler:

Action Options Task

listjobs None Generate a list of Polyspace jobs on the
scheduler. For each job, the software produces
the following information:

• ID — Verification or analysis identifier.
• AUTHOR — Name of user that submitted

job.
• APPLICATION — Name of Polyspace

product, for example, Polyspace Code
Prover or Polyspace Bug Finder.

• LOCAL_RESULTS_DIR — Results folder
on local computer, specified through
the Tools > Preferences > Server
Configuration tab.

• WORKER — Local computer from which job
was submitted.

• STATUS — Status of job, for example,
running and completed.

• DATE — Date on which job was submitted.
• LANG — Language of submitted source

code.

6-8

 Run Remote Analysis at the Command Line

Action Options Task

download -job ID -results-
folder FolderPath

Download results of analysis with specified ID
to folder specified by FolderPath.

If you do not use the -results-folder
option, the software downloads the result
to the folder you specified when starting
analysis, using the -results-dir option.

After downloading results, use the Polyspace
user interface to view the results. See “Open
Results”.

getlog -job ID Open log for job with specified ID.
remove -job ID Remove job with specified ID.

6-9

6 Command-Line Analysis

Create Command-Line Script from Project File

In this section...

“Generate Scripting Files” on page 6-10
“Run an Analysis” on page 6-11

This example shows how to use a project file that you configured in the Polyspace
interface to generate the necessary information to run from the command line. If
you have already spent time configuring your project in the Polyspace interface, this
command is useful to extract your setup work for scripting. For this example, you use the
example shipped with Polyspace.

Generate Scripting Files

1 In the Polyspace interface, open the example project by selecting Help > Examples
> Bug Finder Example.

This example has been set up and configured with analysis options.
2 Open a command-line terminal and navigate to your Polyspace_Workspace folder.

By default it is:

• Linux — /home/USER/Polyspace_Workspace
• Windows — Users\USER\Documents\Polyspace_Workspace
• Mac — USER/Polyspace_Workspace

3 Navigate down to the example project:

cd Examples/R2016b/Bug_Finder_Example

4 Run the script generation command. (matlabroot is your installed program folder,
for example C:\Program Files\MATLAB\R2016b.)

matlabroot/polyspace/bin/polyspace-bug-finder ...

 -generate-launching-script-for Bug_Finder_Example.psprj

Polyspace generates a folder called Bug_Finder_Example containing:

• source_command.txt — List of source files
• options_command.txt — List of the analysis options
• launchingCommand.sh (UNIX) or launchingCommand.bat (DOS) — Shell

script that calls the correct commands

6-10

 Create Command-Line Script from Project File

For more details about what files are generated and how to use them, see -generate-
launching-script-for.

Run an Analysis

After you have completed, “Generate Scripting Files” on page 6-10, you can use the
files to run an analysis from the command line. The launching script makes integrating
into continuous integration tools such as Jenkins, easier. Here are a few examples of how
to use the generated files to run an analysis.

• Run the generated script locally by using the launchingCommand.bat file.

Bug_Finder_Example\launchingCommand.bat

• Run the generated script and change the results folder.

Bug_Finder_Example\launchingCommand.bat -results-dir Results_BF_Example_mine

The extra -results-dir option overrides the results folder specified in the
options_command.txt file.

• Send the analysis to a remote server and store the results in Polyspace Metrics.

Bug_Finder_Example\launchingCommand.bat ...

 -add-to-results-repository -batch -scheduler MJS@NoteHost

• Run the analysis from the command line with the -options-file option.

matlabroot/polyspace/bin/polyspace-bug-finder-nodesktop -options-file ...

 Bug_Finder_Example\options_command.txt

See Also
-generate-launching-script-for

Related Examples
• “Run Local Analysis from DOS or UNIX Command Line” on page 6-4

External Websites
• How do I use Polyspace with Jenkins?

6-11

http://www.mathworks.com/matlabcentral/answers/279990-how-do-i-use-polyspace-bug-finder-with-jenkins

6 Command-Line Analysis

Create Project Automatically from MATLAB Command Line

If you use build automation scripts to build your source code, you can automatically setup
a Polyspace project from your scripts. The automatic project setup runs your automation
scripts to determine:

• Source files.
• Includes.
• Target & compiler options. For more information on these options, see “Target &

Compiler”.

Use the polyspaceConfigure command to trace your build automation scripts. You can
use the trace information to:

• Create a Polyspace project. You can then open the project in the user interface.

Example: If you use the command make targetName buildOptions to
build your source code, use the following command to create a Polyspace project
myProject.psprj from your makefile:

polyspaceConfigure -prog myProject ...

 make targetName buildOptions

• Create an options file. You can then use the options file to run analysis on your source
code from the command-line.

Example: If you use the command make targetName buildOptions to build your
source code, use the following commands to create an options file myOptions from
your makefile:

polyspaceConfigure -no-project -output-options-file myOptions ...

 make targetName buildOptions

Use the options file to run analysis:

polyspaceBugFinder -options-file myOptions

You can also use advanced options to modify the default behavior of
polyspaceConfigure. For more information, see polyspaceConfigure.

Note:

6-12

 Create Project Automatically from MATLAB Command Line

• In the Polyspace interface, it is possible that the created project will not show implicit
defines or includes. The configuration tool does include them. However, they are not
visible.

• By default, Polyspace assigns the latest version of the compiler to your project. If you
have compilation errors in your project, check the setting for Compiler (-compiler). If
it does not apply to you, change it to a more appropriate one.
For instance, if the compiler setting is visual12 but you are using Microsoft Visual C
++ 2010, change the setting to visual10.

• If your build process requires user interaction, you cannot run the build command
from the Polyspace user interface and do an automatic project setup.

More About
• “Requirements for Project Creation from Build Systems” on page 1-9
• “Compiler Not Supported for Project Creation from Build Systems” on page

17-41
• “Slow Build Process When Polyspace Traces the Build” on page 17-49

6-13

6 Command-Line Analysis

Run Polyspace in MATLAB

There are several different ways to analyze C/C++ code in MATLAB. Choose the method
that best fits your needs:

• “MATLAB Objects” on page 6-14 — Recommended for pure MATLAB scripting.
• “Project Files” on page 6-16 — Recommended for running projects created in the

Polyspace interface. You can continue to view and edit the project from the Polyspace
interface.

• “UNIX/DOS Command-Line Analysis Options and Values” on page 6-16 —
Recommended if adapting a UNIX/DOS script directly. Uses the syntax from UNIX
and DOS scripts.

MATLAB Objects

Using a combination of objects, methods, and functions, this method is best for scripting
in the MATLAB language only.

For Bug Finder, there are two main classes, with two methods, and three additional
helper classes.

6-14

 Run Polyspace in MATLAB

To run analysis in MATLAB, follow this workflow:

1 Create a Polyspace options object.

You can either create an object with the class that fits best:

• polyspace.BugFinderOptions — for handwritten code
• polyspace.ModelLinkBugFinderOptions — for model-generated code

Or you can create an object by copying a previous options object (Bug Finder or Code
Prover) with the polyspace.options.copyTo.

2 Customize the properties of your options object.

It can take some trial-and-error to find the optimal set of analysis options. At
minimum, you must add source files to the options object and any related include

6-15

6 Command-Line Analysis

file. To create further customizations, use the following classes. These options objects
are added to the Bug Finder options object:

• polyspace.DefectsOptions — Custom list of active defects to check.
• polyspace.GenericTargetOptions — Custom target processor settings.
• polyspace.CodingRulesOptions — Custom list of coding rules to check.

3 Run an analysis on your object with the function polyspaceBugFinder.
4 If you want to view and modify your project in the Polyspace environment, create a

project from your options object with the method polyspace.options.generateProject.

For an example script, see “Examples”.

Project Files

This method uses a .psprj project file to run the analysis. When you create a project in
the Polyspace interface, the project file is saved as a .psprj file.

1 In the Polyspace interface, create a project on page 1-2.

Unless you specify a different location, the project is saved as a .bf.psprj file in
your Polyspace Workspace.

2 In MATLAB, run an analysis on your project file with this line of code:

polyspaceBugFinder(path to .psprj project,'nodesktop')

3 To make changes to the project, open the project in the Polyspace interface.

UNIX/DOS Command-Line Analysis Options and Values

This method uses the analysis option name and values that are used in UNIX or DOS.
Unless you are adapting a UNIX/DOS script to MATLAB, try one of the previous
methods first.

In MATLAB, enter analysis options and their values as character vector arguments to
the function polyspaceBugFinder.

Examples:

• To specify the target processor, use the -target option and a supported target.

polyspaceBugFinder('-sources','file.c','-target','m68k')

6-16

 Run Polyspace in MATLAB

• To add MISRA C:2012 rule checking to your analysis, use the -misra3 option.

polyspaceBugFinder('-sources','file.c','-misra3')

To see the full list of analysis options, enter:

polyspaceBugFinder('-help')

For the full list of analysis options, see “Analysis Options”.

See Also
polyspaceBugFinder

6-17

7

Polyspace Bug Finder Analysis in
Simulink

• “Embedded Coder Considerations” on page 7-2
• “TargetLink Considerations” on page 7-5
• “Generate and Analyze Code” on page 7-8
• “Main Generation for Model Analysis” on page 7-15
• “Review Generated Code Results” on page 7-17
• “Troubleshoot Back to Model” on page 7-19
• “Analyze Code and Test Software-in-the-Loop” on page 7-21

7 Polyspace Bug Finder Analysis in Simulink

Embedded Coder Considerations

In this section...

“Default Options” on page 7-2
“Recommended Polyspace Bug Finder Options for Analyzing Generated Code” on page
7-3
“Hardware Mapping Between Simulink and Polyspace” on page 7-4

Default Options

For Embedded Coder® code, the software sets certain analysis options by default.

Default options for C:

-sources path_to_source_code

-results-dir results

-D PST_ERRNO

-D main=main_rtwec __restrict__=

-I matlabroot\polyspace\include

-I matlabroot\extern\include

-I matlabroot\rtw\c\libsrc

-I matlabroot\simulink\include

-I matlabroot\sys\lcc\include

-ignore-constant-overflows true

-scalar-overflows-behavior wrap-around

-allow-negative-operand-in-shift true

-boolean-types boolean_T

-functions-to-stub=[rtIsNaN,rtIsInf,rtIsNaNF,rtIsInfF]

Default options for C++:

-sources path_to_source_code

-results-dir results

-D PST_ERRNO

-D main=main_rtwec __restrict__=

-I matlabroot\polyspace\include

-I matlabroot\extern\include

-I matlabroot\rtw\c\libsrc

-I matlabroot\simulink\include

-I matlabroot\sys\lcc\include

7-2

 Embedded Coder Considerations

-OS-target no-predfined-OS

-dialect iso

-ignore-constant-overflows true

-scalar-overflows-behavior wrap-around

-allow-negative-operand-in-shift true

-functions-to-stub=[rtIsNaN,rtIsInf,rtIsNaNF,rtIsInfF]

Note: matlabroot is the MATLAB installation folder.

Recommended Polyspace Bug Finder Options for Analyzing Generated
Code

For Embedded Coder code, you can specify other analysis options for your Polyspace
Project through the Polyspace Configuration pane. To open this pane:

1 In the Simulink model window, select Code > Polyspace > Options. The
Polyspace pane opens.

2 Click Configure. The Polyspace Configuration pane opens.

The following table describes options that you should specify in your Polyspace project
before analyzing code generated by Embedded Coder software.

Option Recommended
Value

Comments

Macros > Preprocessor
definitions

-D

See comments Defines macro compiler flags used during
compilation. Some defines are applied by
default, depending on your -OS-target.

Use one -D for each line of the Embedded
Coder generated defines.txt file.

Polyspace does not do this by default.
Environment Settings >
Code from DOS or Windows
file system

-dos

On You must select this option if the contents of
the include or source directory comes from
a DOS or Windows file system. The option
allows the analysis to deal with upper/lower
case sensitivity and control characters issues.

Concerned files are:

7-3

7 Polyspace Bug Finder Analysis in Simulink

Option Recommended
Value

Comments

• Header files – All include folders specified
(-I option)

• Source files – All source files selected for
the analysis (-sources option)

Hardware Mapping Between Simulink and Polyspace

The software automatically imports target word lengths and byte ordering (endianess)
from Simulink model hardware configuration settings. The software maps Device
vendor and Device type settings on the Simulink Configuration Parameters >
Hardware Implementation pane to Target processor type settings on the Polyspace
Configuration pane.

The software creates a generic target for the analysis.

7-4

 TargetLink Considerations

TargetLink Considerations

In this section...

“TargetLink Support” on page 7-5
“Default Options” on page 7-5
“Lookup Tables” on page 7-6
“Data Range Specification” on page 7-6
“Code Generation Options” on page 7-7

TargetLink Support

The Windows version of Polyspace Bug Finder is supported for versions 3.5 and 4.0 of the
dSPACE® Data Dictionary and TargetLink® Code Generator.

Polyspace Bug Finder does support CTO generated code. However, for better results,
MathWorks recommends that you disable the CTO option in TargetLink before
generating code. For more information, see the dSPACE documentation.

Because Polyspace Bug Finder extracts information from the dSPACE Data Dictionary,
you must regenerate the code before performing an analysis.

Default Options

Polyspace sets the following options by default:

-sources path_to_source_code

-results-dir results_folder_name

-I path_to_source_code

-D PST_ERRNO

-I dspaceroot\matlab\TL\SimFiles\Generic

-I dspaceroot\matlab\TL\srcfiles\Generic

-I dspaceroot\matlab\TL\srcfiles\i86\LCC

-I matlabroot\polyspace\include

-I matlabroot\extern\include

-I matlabroot\rtw\c\libsrc

-I matlabroot\simulink\include

-I matlabroot\sys\lcc\include

-functions-to-stub=[rtIsNaN,rtIsInf,rtIsNaNF,rtIsInfF]

-ignore-constant-overflows

7-5

7 Polyspace Bug Finder Analysis in Simulink

-scalar-overflows-behavior wrap-around

-boolean-types Bool

Note: dspaceroot and matlabroot are the dSPACE and MATLAB tool installation
directories respectively.

Lookup Tables

By default, Polyspace provides stubs for the lookup table functions. The dSPACE data
dictionary is used to define the range of their return values. A lookup table that uses
extrapolation returns full range for the type of variable that it returns. You can disable
this behavior from the Polyspace configuration menu.

Data Range Specification

You can constrain inputs, parameters, and outputs to lie within specified data ranges.
See “Specify Signal Ranges” on page 9-15.

The software automatically creates a Polyspace constraints file using the dSPACE Data
Dictionary for each global variable. The DRS information is used to initialize each global
variable to the range of valid values as defined by the min..max information in the data
dictionary. This information allows Polyspace software to model real values for the
system during analysis. Carefully defining the min-max information in the model allows
the analysis to be more precise, because only the range of real values is analyzed.

Note: Boolean types are modeled having a minimum value of 0 and a maximum of 1.

You can also manually define a DRS file in the Polyspace user interface. If you define
a DRS file, the software appends the automatically generated information to the DRS
file you create. Manually defined DRS information overrides automatically generated
information for all variables.

DRS cannot be applied to static variables. Therefore, the compilation flags -D static=
is set automatically. It has the effect of removing the static keyword from the code. If you
have a problem with name clashes in the global name space, either rename the variables
or disable this option in Polyspace configuration.

7-6

 TargetLink Considerations

Code Generation Options

From the TargetLink Main Dialog, it is recommended to:

• Set the option Clean code
• Unset the option Enable sections/pragmas/inline/ISR/user attributes
• Turn off the compute to overflow (CTO) generation. Polyspace can analyze code

generated with CTO, but the results may not be as precise.

When you install Polyspace, the tlcgOptions variable is updated with
'PolyspaceSupport', 'on' (see variable in 'C:\dSPACE\Matlab\Tl\config
\codegen\tl_pre_codegen_hook.m' file).

Related Examples
• “Run Analysis for TargetLink” on page 10-5

External Websites
• dSPACE – TargetLink

7-7

http://www.dspace.com/en/inc/home/products/sw/pcgs/targetli.cfm

7 Polyspace Bug Finder Analysis in Simulink

Generate and Analyze Code

Generate code from referenced models and S-Functions, run a Polyspace analysis from
Simulink, and find code defects and MISRA-C:2012 rule violations.

Generate Code and Run Analysis

Before running Polyspace on models, define the scope of your analysis and generate code
in Embedded Coder.

1. Open the example model.

psdemo_model_link_sl

7-8

 Generate and Analyze Code

2. Right-click the controller subsystem.

3. From the context menu, select C/C++ Code > Build This Subsystem.

4. In the dialog box, select Build.

5. After the build is completed, right-click the controller subsystem.

6. From the context menu, select Polyspace > Options

7. In the Configuration Parameters window, select Product Mode > Bug Finder.

7-9

7 Polyspace Bug Finder Analysis in Simulink

8. Apply your changes and close the Configuration Parameters window.

9. Right-click the controller subsystem.

10. Select Polyspace > Verify code generated for > Selected subsystem.

You can monitor progress from the Command Window. The results are displayed in the
Polyspace environment.

Review Results

In the Polyspace Environment, explore your results and link back to the model.

7-10

 Generate and Analyze Code

1. Select the first result Integer division by zero.

This result shows a possible division by zero. The Source pane shows the
division operation between variables controller_B.threshold and
controller_B.Cumulatedangle.

2. To see this division operation in your model, select the link <S4>/limit_ratio. In
your model, the related block is highlighted in blue.

Fix Errors by Modifying the Model

The division by zero error stems from the Cumulated angle block, whose signal can be
zero. To fix the error in the code, modify this block in your model.

1. Before dividing with the Cumulated angle, add a switch block that checks for values
equal to zero.

7-11

7 Polyspace Bug Finder Analysis in Simulink

2. Rebuild the controller subsystem.

3. Rerun the Bug Finder analysis.

The results show that your fix in the model eliminated the division by zero defect.

7-12

 Generate and Analyze Code

Related Examples
• “Polyspace Configuration for Generated Code” on page 9-2
• “Run Analysis for Embedded Coder” on page 10-3
• “Run Analysis for TargetLink” on page 10-5
• “Configure Model for Code Generation Objectives Using Code Generation Advisor”

More About
• “Recommended Model Settings for Code Analysis” on page 8-3

7-13

7 Polyspace Bug Finder Analysis in Simulink

• “Troubleshoot Back to Model” on page 7-19

7-14

 Main Generation for Model Analysis

Main Generation for Model Analysis

When you run an analysis, the software automatically reads the following information
from the model:

• initialize() functions
• terminate() functions
• step() functions
• List of parameter variables
• List of input variables

The software then uses this information to generate a main function that:

1 Initializes parameters using the Polyspace option -variables-written-before-
loop.

2 Calls initialization functions using the option -functions-called-before-loop.
3 Initializes inputs using the option -variables-written-in-loop.
4 Calls the step function using the option -functions-called-in-loop.
5 Calls the terminate function using the option -functions-called-after-loop.

If the codeInfo for the model does not contain the names of the inputs, the software
considers all variables as entries, except for parameters and outputs.

For C++ code that is generated with Embedded Coder, the initialize(), step(), and
terminate() functions are either class methods or have global scope. These different
scopes contain the associated variables.

• For class methods in the generated code, the variables that are written before and in
the loop refer to the class members.

• For functions with global scope, the associated variables are also in the global scope.

main for Generated Code

The following example shows the main generator options that the software uses to
generate the main function for code generated from a Simulink model.
init parameters \\ -variables-written-before-loop

init_fct() \\ -functions-called-before-loop

 while(1){ \\ start main loop

 init inputs \\ -variables-written-in-loop

7-15

7 Polyspace Bug Finder Analysis in Simulink

 step_fct() \\ -functions-called-in-loop

}

terminate_fct() \\ -functions-called-after-loop

7-16

 Review Generated Code Results

Review Generated Code Results

After you run a Polyspace analysis on generated code, you review the results from the
Polyspace environment. From the results you can link back to the related blocks in your
model.

1 Open the results using one of the following methods.

• If you analyzed the whole model, from the Simulink toolbar, select Code >
Polyspace > Open Results.

If you set Model reference verification depth to All and selected Model by
model verification. The Select the Result Folder to Open in Polyspace
dialog box opens showing a hierarchy of referenced models from which the
software generates code. To view the analysis results for a specific model, select
the model from the hierarchy. Then click OK.

• If you want to open results for a Model block or subsystem, right-click the Model
block or subsystem, and from the context menu, select Polyspace > Open
Results.

• From the Polyspace Interface, select File > Open and navigate to your results.
• If you selected Add to results repository the results are stored on the

Polyspace Metrics server. See “View Results List in Polyspace Metrics” on page
18-23.

2 On the Results List tab, select a result.

When you select a result, the Result Details pane shows additional information
about the defect, including traceback information (if available).

3 Look at the result in the Source pane. Your select result is highlighted in the source
code.

4 Hover over the result in the source code. The tooltip can provide additional
information including variable ranges.

5 Above the defect, click a blue underlined link. For example, <Root>/Relational
Operator.

The Simulink model opens, highlighting the block related to the nearby source
code. This back-to-model linking allows you to fix defects in the model instead of the
generated code.

7-17

7 Polyspace Bug Finder Analysis in Simulink

Related Examples
• “View Results”
• “Polyspace Bug Finder Results”

More About
• “Troubleshoot Back to Model” on page 7-19

7-18

 Troubleshoot Back to Model

Troubleshoot Back to Model

In this section...

“Back-to-Model Links Do Not Work” on page 7-19
“Your Model Already Uses Highlighting” on page 7-19

Back-to-Model Links Do Not Work

You may encounter issues with the back-to-model feature if:

• Your operating system is Windows Vista™ or Windows 7; and User Account Control
(UAC) is enabled or you do not have administrator privileges.

• You have multiple versions of MATLAB installed.

To reconnect MATLAB and Polyspace:

1 Close Polyspace.
2 At the MATLAB command-line, enter pslinkfun('enablebacktomodel').

When you open your Polyspace results, the hyper-links will highlight the relevant
blocks in your model.

Your Model Already Uses Highlighting

If your model extensively uses block coloring, the coloring from this feature may interfere
with the colors already in your model. To change the color of blocks when they are linked
to Polyspace results use this command:

HILITE_DATA = struct('HiliteType', 'find', 'ForegroundColor', 'black', ...

 'BackgroundColor', color);

set_param(0, 'HiliteAncestorsData', HILITE_DATA)

Where color is one of the following:

• 'cyan'

• 'magenta'

• 'orange'

• 'lightBlue'

7-19

7 Polyspace Bug Finder Analysis in Simulink

• 'red'

• 'green'

• 'blue'

• 'darkGreen'

7-20

 Analyze Code and Test Software-in-the-Loop

Analyze Code and Test Software-in-the-Loop

Code Analysis and Testing Software-in-the-Loop Overview

Analyze code to detect errors, check standards compliance, and evaluate key metrics
such as length and cyclomatic complexity. Typically for handwritten code, you check
for run-time errors with static code analysis and run test cases that evaluate the code
against requirements and evaluate code coverage. Based on the results, refine the code
and add tests. For generated code, demonstrate that code execution produces equivalent
results to the model by using the same test cases and baseline results. Compare the code
coverage to the model coverage. Based on test results, add tests and modify the model to
regenerate code.

Analyze Code for Defects, Metrics, and MISRA C:2012

This workflow describes how to check if your model produces MISRA C:2012 compliant
code and how to check your generated code for code metrics, code defects, and MISRA
compliance. To produce more MISRA compliant code from your model, you use the code
generation and model advisors. To check whether the code is MISRA compliant, you
use the Polyspace MISRA C:2012 checker and report generation capabilities. For this
example, you use the model simulinkCruiseErrorAndStandardsExample. To open
the model:

1 Open the Simulink project:

7-21

7 Polyspace Bug Finder Analysis in Simulink

slVerificationCruiseStart

2 From the Simulink project, open the model
simulinkCruiseErrorAndStandardsExample.

Run Code Generator Checks

Before you generate code from your model, there are steps that you can take to generate
code more compliant with MISRA C and more compatible with Polyspace. This example
shows how to use the Code Generation Advisor to check your model before generating
code.

1 Right-click Compute target speed and select C/C++ > Code Generation Advisor.
2 Select the Code Generation Advisor folder. Add the Polyspace objective. The MISRA

C:2012 guidelines objective is already selected.

7-22

 Analyze Code and Test Software-in-the-Loop

3 Click Run Selected Checks.

The Code Generation Advisor checks whether there are any blocks or configuration
settings that are not recommended for MISRA C:2012 compliance and Polyspace
code analysis. For this mode, the check for incompatible blocks passes, but there
are some configuration settings that are incompatible with MISRA compliance and
Polyspace checking.

4 Click on check that was not passed. Accept the parameter changes by selecting
Modify Parameters.

5 Rerun the check by selecting Run This Check.

For your own model, you might not want to use all the recommended configuration
settings. Using nonrecommended settings can generate less MISRA compliant code.

7-23

7 Polyspace Bug Finder Analysis in Simulink

Run Model Advisor Checks

Before you generate code from your model, there are steps you can take to generate code
more compliant with MISRA C and more compatible with Polyspace. This example shows
you how to use the Model Advisor to check your model further before generating code.

For more checking before generating code, you can also run the Modeling Guidelines for
MISRA C:2012.

1 At the bottom of the Code Generation Advisor window, select Model Advisor.
2 Under the By Task folder, select the Modeling Guidelines for MISRA C:2012

advisor checks.

3 Click Run Selected Checks and review the results.
4 If any of the tasks fail, make the suggested modifications and rerun the checks until

the MISRA modeling guidelines pass.

7-24

 Analyze Code and Test Software-in-the-Loop

For your own model, you might not want to use all the recommendations. Using
nonrecommended settings or blocks can generate less MISRA compliant code.

Generate and Analyze Code

After you have done the model compliance checking, you can now generate code. With
Polyspace, you can check your code for compliance with MISRA C:2012 and generate
reports to demonstrate compliance with MISRA C:2012.

1 In the Simulink editor, right-click Compute target speed and select C/C++ > Build
This Subsystem.

2 Use the default settings for the tunable parameters and select Build.
3 After the code is generated, right-click Compute target speed and select Polyspace

> Options.

7-25

7 Polyspace Bug Finder Analysis in Simulink

4 Click the Configure button. This option allows you to choose more advanced
Polyspace analysis options in the Polyspace configuration window.

5 On the same pane, select Calculate Code Metrics. This option turns on code metric
calculations for your generated code.

6 Save and close the Polyspace configuration window.
7 From your model, right-click Compute target speed and select Polyspace > Verify

Code Generated For > Selected Subsystem.

Polyspace Bug Finder analyzes the generated code for a subset of MISRA checks and
defect checks. You can see the progress of the analysis in the MATLAB Command
Window. Once the analysis is finished, the Polyspace environment opens.

7-26

 Analyze Code and Test Software-in-the-Loop

Review Results

After you run a Polyspace analysis of your generated code, the Polyspace environment
shows you the results of the static code analysis. There are 50 MISRA C:2012 coding rule
violations in your generated code.

1 Expand the tree for rule 8.7 and click through the different results.

Rule 8.7 states that functions and objects should not be global if the function or
object is local. As you click through the 8.7 violations, you can see that these results
refer to variables that other components also use, such as CruiseOnOff. You can
annotate your code or your model to justify every result. But, because this model is
a unit in a larger program, you can also change the configuration of the analysis to
check only a subset of MISRA rules.

2 In your model, right-click Compute target speed and select Polyspace > Options.
3 Set the Settings from option to Project configuration. This option allow you

to choose a subset of MISRA rules in the Polyspace configuration.
4 Click the Configure button.

7-27

7 Polyspace Bug Finder Analysis in Simulink

5 In the Polyspace Configuration window, on the Coding Rules & Code Metrics
pane, select the check box Check MISRA C:2012 and from the drop-down list, select
single-unit-rules. Now, Polyspace checks only the MISRA C:2012 rules that are
applicable to a single unit.

6 Save and close the Polyspace configuration window.
7 Rerun the analysis with the new configuration.

When the Polyspace environment reopens, there are no MISRA results, only code
metric results. The rules Polyspace showed previously were found because the model
was analyzed by itself. When you limited the rules Polyspace checked to the single-
unit subset, no violations were found.

7-28

 Analyze Code and Test Software-in-the-Loop

When this model is integrated with its parent model, you can add the rest of the MISRA
C:2012 rules.

Generate Report

To demonstrate compliance with MISRA C:2012 and report on your generated code
metrics, you must export your results. This section shows you how to generate a report
after the analysis. If you want to generate a report every time you run an analysis, see
Generate report.

1 If they are not open already, open your results in the Polyspace environment.
2 From the toolbar, select Reporting > Run Report.
3 Select BugFinderSummary as your report type.
4 Click Run Report.

The report is saved in the same folder as your results.
5 To open the report, select Reporting > Open Report.

Related Examples
• “Generate and Analyze Code” on page 7-8
• “Test Two Simulations for Equivalence”
• “Export Test Results and Generate Reports”

7-29

8

Configure Model for Code Analysis

• “Configure Simulink Model” on page 8-2
• “Recommended Model Settings for Code Analysis” on page 8-3
• “Check Simulink Model Settings” on page 8-5
• “Annotate Blocks for Known Results” on page 8-11

8 Configure Model for Code Analysis

Configure Simulink Model

Before analyzing your generated code, there are certain settings that you should apply to
your model. Use the following workflow to prepare your model for code analysis.

• If you know of results ahead of time, annotate your blocks with Polyspace
annotations.

• Set the recommended configuration parameters.
• Double-check your model settings.
• Generate code.
• Set up your Polyspace options.

8-2

 Recommended Model Settings for Code Analysis

Recommended Model Settings for Code Analysis

For Polyspace analyses, set the following parameter configurations before generating
code. If you do not use the recommended value for SystemTargetFile, you get an error.
For other parameters, if you do not use the recommended value, you get a warning.

Grouping Command-Line Name and Location in
Configuration

Name: SystemTargetFile

Value: An Embedded Coder Target Language
Compiler (TLC) file.

For example ert.tlc or autosar.tlc.

Location: Code Generation

Name: System target file

Value: Embedded Coder
target file

Name: MatFileLogging

Value: 'off'

Location: All Parameters

Name: MAT-file logging

Value: Not selected
Name: GenerateReport

Value: 'on'

Location: Code Generation
> Report

Name: Create code-
generation report

Value: Selected
Name: IncludeHyperlinksInReport

Value: 'on'

Location: All Parameters

Name: Code-to-model

Value: Selected

Code Generation

Name: GenerateSampleERTMain

Value: 'off'

Location: Code Generation
> Templates

Name: Generate an
example main program

Value: Not selected

8-3

8 Configure Model for Code Analysis

Grouping Command-Line Name and Location in
Configuration

Name: GenerateComments

Value: 'on'

Location: Code Generation
> Comments

Name: Include comments

Value: Selected
Name: DefaultParameterBehavior

Value: 'Inlined'

Location: Optimization >
Signals and Parameters

Name: Default parameter
behavior

Value: Inlined
Name: InitFltsAndDblsToZero

Value: 'on'

Location: All Parameters

Name: Use memset to
initialize floats and
doubles to 0.0

Value: Not selected

Optimization

Name: ZeroExternalMemoryAtStartup

Value: 'on'

Location: Optimization

Name: Remove root level I/
O zero initialization

Value: Not selected
Name: SolverType

Value: 'Fixed-Step'

Location: Solver

Name: Type

Value: Fixed-step
Solver Name: Solver

Value: 'FixedStepDiscrete'

Location: Solver

Name: Solver

Value: discrete (no
continuous states)

8-4

 Check Simulink Model Settings

Check Simulink Model Settings

With the Polyspace plug-in, you can check your model settings before generating code
or before starting an analysis. If you alter your model settings, rebuild the model to
generate fresh code. If the generated code version does not match your model version,
warnings appear when you run the analysis.

Check Simulink Model Settings Using the Code Generation Advisor

Before generating code, you can check your model settings against the “Recommended
Model Settings for Code Analysis” on page 8-3. If you do not use the recommended model
settings, the back-to-model linking will not work correctly.

1 From the Simulink model window, select Code > C/C++ Code > Code Generation
Options. The Configuration Parameters dialog box opens, displaying the Code
Generation pane.

2 Select Set Objectives.
3 From the Set Objective – Code Generation Advisor window, add the Polyspace

objective and any others that you want to check.
4 In the Check model before generating code drop-down list, select either:

• On (stop for warnings), the process stops for either errors or warnings
without generating code.

• On (proceed with warnings), the process stops for errors, but continues
generating code if the configuration only has warnings.

5 Select Check Model.

The software runs a configuration check. If your configuration check finds errors or
warnings, the Diagnostics Viewer displays the issues and recommendations.

8-5

8 Configure Model for Code Analysis

Check Simulink Model Settings Before Analysis

With the Polyspace plug-in, you can check your model settings before starting an
analysis:

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens, displaying the Polyspace pane.

2 Click Check configuration. If your model settings are not optimal for Polyspace,
the software displays warning messages with recommendations.

8-6

 Check Simulink Model Settings

3 From the Check configuration before verification menu, select either:

• On (stop for warnings), the analysis stops for either errors or warnings.
• On (proceed with warnings), the analysis stops for errors, but continues the

code analysis if the configuration only has warnings.
4 Select Run verification.

The software runs a configuration check. If your configuration check finds errors or
warnings, the Diagnostics Viewer displays the issues and recommendations.

8-7

8 Configure Model for Code Analysis

If you alter your model settings, rebuild the model to generate fresh code. If the
generated code version does not match your model version, the software produces
warnings when you run the analysis.

Check Simulink Model Settings Automatically

With the Polyspace plug-in, you can check your model settings before starting an
analysis:

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens, displaying the Polyspace pane.

2 Click Check configuration. If your model settings are not optimal for Polyspace,
the software displays warning messages with recommendations.

8-8

 Check Simulink Model Settings

3 From the Check configuration before verification menu, select either:

• On (stop for warnings) — will
• On (proceed with warnings)

4 Select Run verification.

The software runs a configuration check. If your configuration check finds errors or
warnings, the Diagnostics Viewer displays the issues and recommendations.

8-9

8 Configure Model for Code Analysis

If you select:

• On (stop for warnings), the analysis stops for either errors or warnings.
• On (proceed with warnings) — the analysis stops for errors, but continues

the code analysis if the configuration only has warnings.

If you alter your model settings, rebuild the model to generate fresh code. If the
generated code version does not match your model version, the software produces
warnings when you run the analysis.

More About
• “Recommended Model Settings for Code Analysis” on page 8-3

8-10

 Annotate Blocks for Known Results

Annotate Blocks for Known Results

You can annotate individual blocks in your Simulink model to inform Polyspace software
of known defects, run-time checks, or coding-rule violations. These annotations allow you
to highlight and categorize previously identified results, so you can focus on reviewing
new results.

Your Polyspace results displays the information that you provide with block annotations.
To annotate blocks:

1 Right-click the block you want to annotate and select Polyspace > Annotate
Selected Block > Edit.

8-11

8 Configure Model for Code Analysis

2 In the Polyspace Annotation dialog box, select an Annotation type:

• Check — Code Prover run-time error
• Defect — Bug Finder defect
• MISRA-C — MISRA C 2004 coding rule violation
• MISRA-AC-AGC — MISRA AC AGC coding rule violation
• MISRA-C-2012 — MISRA C 2012 coding rule violation
• MISRA-C++ — MISRA C++ coding rule violation
• JSF — JSF C++ coding rule violation

3 If you want to highlight only one kind of result, select Only 1 check and the
relevant error or coding rule from the Select result kind drop-down list.

4 If you want to highlight a list of checks, clear Only 1 check. In the Enter a list of
results field, specify the errors or rules that you want to highlight.

5 Set any of the following options as desired:

Option Values

Status – describe how
you intend to address
the issue

Fix, Improve, Investigate, Other, Justified (This
status marks the result as justified), No action planned
(This status also marks the result as justified.)

Severity — describe
the severity of the issue

High, Medium, Low, Not a defect

Comment Any additional information about the check.

6 Click OK. You annotation is added to the block.

8-12

 Annotate Blocks for Known Results

When you run an analysis, the Results List pane pre-populates the results with
your annotation.

See Also
pslinkfun

8-13

9

Configure Code Analysis Options

• “Polyspace Configuration for Generated Code” on page 9-2
• “Include Handwritten Code” on page 9-3
• “Configure Analysis Depth for Referenced Models” on page 9-4
• “Configure Advanced Polyspace Analysis Options” on page 9-5
• “Set Custom Target Settings” on page 9-8
• “Set Up Remote Batch Analysis” on page 9-11
• “Manage Results” on page 9-12
• “Specify Signal Ranges” on page 9-15

9 Configure Code Analysis Options

Polyspace Configuration for Generated Code

You do not have to manually create a Polyspace project or specify Polyspace options
before running an analysis for your generated code. By default, Polyspace automatically
creates a project and extracts the required information from your model. You can modify
this configuration and or specify additional options for your analysis with the Polyspace
configuration options:

• You may incorporate separately created code within the code generated from your
Simulink model. See “Include Handwritten Code” on page 9-3.

• You may customize the options for your analysis. For example, to specify the target
environment or adjust precision settings. See “Configure Advanced Polyspace
Analysis Options” on page 9-5 and “Recommended Polyspace Bug Finder Options
for Analyzing Generated Code” on page 7-3.

• You may create specific configurations for batch runs. See “Use a Saved Polyspace
Configuration File Template” on page 9-6.

• If you want to analyze code generated for a 16-bit target processor, you must specify
header files for your 16-bit compiler. See “Set Custom Target Settings” on page
9-8.

9-2

 Include Handwritten Code

Include Handwritten Code

Files such as S-Function wrappers are, by default, not part of the Polyspace analysis.
However, you can add these files to your generated code analysis manually. You can also
analyze your S-Functions separately.

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens, displaying the Polyspace pane.

2 Select the Enable additional file list check box. Then click Select files. The Files
Selector dialog box opens.

3 Click Add. The Select files to add dialog box opens.
4 Use the Select files to add dialog box to:

• Navigate to the relevant folder
• Add the required files.

The software displays the selected files as a list under Additional files to analyze.

Note: To remove a file from the list, select the file and click Remove. To remove all
files from the list, click Remove all.

5 Click OK.

9-3

9 Configure Code Analysis Options

Configure Analysis Depth for Referenced Models

From the Polyspace pane, you can specify the analysis of generated code with respect to
model reference hierarchy levels:

• Model reference verification depth — From the drop-down list, select one of the
following:

• Current model only — Default. The Polyspace runs code from the top level
only. The software creates stubs to represent code from lower hierarchy levels.

• 1 — The software analyzes code from the top level and the next level. For
subsequent hierarchy levels, the software creates stubs.

• 2 — The software analyzes code from the top level and the next two hierarchy
levels. For subsequent hierarchy levels, the software creates stubs.

• 3 — The software analyzes code from the top level and the next three hierarchy
levels. For subsequent hierarchy levels, the software creates stubs.

• All — The software analyzes code from the top level and all lower hierarchy
levels.

• Model by model verification — Select this check box if you want the software to
analyze code from each model separately.

Note: The same configuration settings apply to all referenced models within a top
model. The options and parameters are the same whether you open the Polyspace
pane (Polyspace > Options) from the toolbar or through the right-click context menu.
However, you can run analyses for code generated from specific Model blocks. See “Run
Analysis for Embedded Coder” on page 10-3.

9-4

 Configure Advanced Polyspace Analysis Options

Configure Advanced Polyspace Analysis Options

From Simulink, you can specify Polyspace options to change the configuration of the
Polyspace analysis. For example, you can specify the processor type and operating system
of your target device. For descriptions of options, see “Analysis Options”.

In this section...

“Set Advanced Analysis Options” on page 9-5
“Use a Saved Polyspace Configuration File Template” on page 9-6
“Reset Polyspace Options for a Simulink Model” on page 9-7

Set Advanced Analysis Options

1 From Simulink, select Code > Polyspace > Options.
2 In the Polyspace parameter configuration pane, select Configure.
3 In the Polyspace Configuration window that opens, set the options required by your

application.

The first time you open the configuration, the software sets certain options by
default depending on your code generator. See Default Embedded Coder Options on
page 7-2 or Default TargetLink Options on page 7-5.

4 To change the project name or other project properties, on the toolbar, click the

Project properties icon

9-5

9 Configure Code Analysis Options

5 Save your changes and close.
6 To use your configuration with other projects, copy the .psprj file and rename the

updated project configuration file. For example, you can call your cross-compilation
configuration my_cross_compiler.psprj.

Use a Saved Polyspace Configuration File Template

If you want to reuse a Polyspace configuration for multiple project, you need to add the
configuration to the model parameters. This workflow shows how to add a previously
created configuration. To create a configuration file template, see “Set Advanced Analysis
Options” on page 9-5.

In the Simulink user interface:

1 From Simulink, select Code > Polyspace > Options.
2 In the Polyspace parameter configuration pane, select Use custom project file.
3 In the text box, enter the full path to a .psprj file, or click Browse for project file

to browse instead.

At the MATLAB command line:

9-6

 Configure Advanced Polyspace Analysis Options

• Use pslinkfun('settemplate',...) to apply a configuration defined by a
configuration file template.

For example:

pslinkfun('settemplate','C:\Work\my_cross_compiler.psprj')

Reset Polyspace Options for a Simulink Model

If you want to reset the Polyspace configuration information to the default, you can
remove your custom options from your Simulink model.

1 To remove options from a top model, select Code > Polyspace > Remove Options
from Current Configuration.

2 To remove options from a Model block or subsystem, right-click the block
or subsystem and select Polyspace > Remove Options from Current
Configuration.

3 Save the model.

See Also
pslinkfun | pslinkoptions

Related Examples
• “Use a Saved Polyspace Configuration File Template” on page 9-6

More About
• “Embedded Coder Considerations” on page 7-2
• “TargetLink Considerations” on page 7-5
• “Recommended Polyspace Bug Finder Options for Analyzing Generated Code” on

page 7-3

9-7

9 Configure Code Analysis Options

Set Custom Target Settings

If your target has specific setting, you can analyze your code in context of those settings.
For example, if you want to analyze code generated for a 16-bit target processor, you
must specify header files for your 16-bit compiler. The software automatically identifies
the compiler from the Simulink model. If the compiler is 16-bit and you do not specify
the relevant header files, the Polyspace will produce an error when you try to run an
analysis.

Note: For a 32-bit or 64-bit target processor, the software automatically specifies the
default header file.

1 In the Simulink model window, select Code > Polyspace > Options.
2 Click Configure.

The Polyspace Configuration window opens. Use this pane to customize the target
and cross compiler.

3 From the Configuration tree, expand the Target & Compiler node.
4 In the Target Environment section, use the Target processor type option to

define the size of data types.

a From the drop-down list, select mcpu...(Advanced). The Generic target
options dialog box opens.

9-8

 Set Custom Target Settings

Use this dialog box to create a new target and specify data types for the target.
Then click Save.

5 From the Configuration tree, select Target & Compiler > Macros. Use the
Preprocessor definitions section to define preprocessor macros for your cross-
compiler.

To add a macro, in the Macros table, select . In the new line, enter the required
text.

To remove a macro, select the macro and click .

Note: If you use the LCC cross-compiler, then you must specify the
MATLAB_MEX_FILE macro.

6 Select Target & Compiler > Environment Settings.

9-9

9 Configure Code Analysis Options

7 In the Include folders (or Include) section, specify a folder (or header file) path by
doing one of the following:

•
Select and enter the folder or file path.

•
Select and use the dialog box to navigate to the required folder (or file).

You can remove an item from the displayed list by selecting the item and then

clicking .
8 Save your changes and close.

To use your configuration settings in other projects, see “Use a Saved Polyspace
Configuration File Template” on page 9-6.

9-10

 Set Up Remote Batch Analysis

Set Up Remote Batch Analysis

By default, the Polyspace software runs locally. To specify a remote analysis:

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens, displaying the Polyspace pane.

2 Select Configure.
3 In the Polyspace Configuration window, select the Distributed Computing pane.
4 Select the Batch check box.
5 If you use Polyspace Metrics as a results repository, select Add to results

repository.
6 If you have not already connected to a server, from the toolbar, select Options >

Preferences. For help filling in this dialog, see “Configure Polyspace Preferences”.
7 Close the configuration window and apply your changes.

9-11

9 Configure Code Analysis Options

Manage Results

In this section...

“Open Polyspace Results Automatically” on page 9-12
“Specify Location of Results” on page 9-13
“Save Results to a Simulink Project” on page 9-14

Open Polyspace Results Automatically

You can configure the software to automatically open your Polyspace results after you
start the analysis. If you are doing a remote analysis, the Polyspace Metrics web page
opens. When the remote job is complete, you can download your results from Polyspace
Metrics. If you are doing a local analysis, when the local job is complete, the Polyspace
environment opens the results in the Polyspace interface.

To configure the results to open automatically:

1 From the model window, select Code > Polyspace > Options.

The Polyspace pane opens.

9-12

 Manage Results

2 In the Results review section, select Open results automatically after
verification.

3 Click Apply to save your settings.

Specify Location of Results

By default, the software stores your results in Current
Folder\results_model_name. Every time you rerun, your old results are over written.
To customize these options:

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameters dialog box opens to the Polyspace pane.

2 In the Output folder field, specify a full path for your results folder. By default, the
software stores results in the current folder.

3 If you want to avoid overwriting results from previous analyses, select Make output
folder name unique by adding a suffix.

9-13

9 Configure Code Analysis Options

Instead of overwriting an existing folder, the software specifies a new location for the
results folder by appending a unique number to the folder name.

Save Results to a Simulink Project

By default, the software stores your results in Current
Folder\results_model_name. If you use a Simulink project for your model work, you
can store your Polyspace results there as well for better organization. To add your results
to a Simulink Project:

1 Open your Simulink project.
2 From the Simulink model window, select Code > Polyspace > Options. The

Configuration Parameters dialog box opens with the Polyspace pane displayed.
3 Select Add results to current Simulink Project.
4 Run your analysis.

Your results are saved to the Simulink project you opened in step 1.

9-14

 Specify Signal Ranges

Specify Signal Ranges

If you constrain signals in your Simulink model to lie within specified ranges, Polyspace
software automatically applies these constraints during verification of the generated
code. Using signal rages can improve the precision of your results.

You can specify a range for a model signal by:

• Applying constraints through source block parameters. See “Specify Signal Range
Through Source Block Parameters” on page 9-15.

• Constraining signals through the base workspace. See “Specify Signal Range Through
Base Workspace” on page 9-17.

Note: You can also manually define data ranges using the constraint setup feature in
the Polyspace user interface. If you manually define a constraint specification file, the
software automatically appends any signal range information from your model to the
constraint specification file. However, manually defined constraint information overrides
information generated from the model for all variables.

Specify Signal Range Through Source Block Parameters

You can specify a signal range by applying constraints to source block parameters.

Specifying a range through source block parameters is often easier than creating
signal objects in the base workspace, but must be repeated for each source block. For
information on using the base workspace, see “Specify Signal Range Through Base
Workspace” on page 9-17.

To specify a signal range using source block parameters:

1 Double-click the source block in your model. The Source Block Parameters dialog box
opens.

2 Select the Signal Attributes tab.
3 Specify the Minimum value for the signal, for example, -15.
4 Specify the Maximum value for the signal, for example, 15.

9-15

9 Configure Code Analysis Options

5 Click OK.

9-16

 Specify Signal Ranges

Specify Signal Range Through Base Workspace

You can specify a signal range by creating signal objects in the MATLAB workspace.
This information is used to initialize each global variable to the range of valid values, as
defined by the min-max information in the workspace.

Note: You can also specify a signal range by applying constraints to individual source
block parameters. This method can be easier than creating signal objects in the base
workspace, but must be repeated for each source block. For more information, see
“Specify Signal Range Through Source Block Parameters” on page 9-15.

To specify an input signal range through the base workspace:

1 Configure the signal to use, for example, the ExportedGlobal storage class:

a Right-click the signal. From the context menu, select Properties. The Signal
Properties dialog box opens.

b In the Signal name field, enter a name, for example, my_entry1.
c Select the Code Generation tab.
d In the Storage class drop-down list, select ExportedGlobal.

9-17

9 Configure Code Analysis Options

e Click OK, which applies your changes and closes the dialog box.
2 Using Model Explorer, specify the signal range:

a Select Tools > Model Explorer to open Model Explorer.
b From the Model Hierarchy tree, select Base Workspace.
c Create a signal by clicking the Add Simulink Signal button. Rename this

signal, for example, my_entry1.
d Set the Minimum value for the signal, for example, to -15.
e Set the Maximum value for the signal, for example, to 15.
f From the Storage class drop-down list, select ExportedGlobal.

9-18

 Specify Signal Ranges

g Click Apply.

9-19

10

Run Polyspace on Generated Code

• “Specify Type of Analysis to Perform” on page 10-2
• “Run Analysis for Embedded Coder” on page 10-3
• “Run Analysis for TargetLink” on page 10-5
• “Verify S-Function Code” on page 10-7

10 Run Polyspace on Generated Code

Specify Type of Analysis to Perform

Before running Polyspace, you can specify what type of analysis you want to run. You
can choose to run code analysis, coding rules checking, or both. You can check compliance
with MISRA AC AGC, MISRA C:2004, MISRA C:2012, MISRA C++, and JSF C++ coding
rules.

To specify the type of analysis to run:

1 From the Simulink model window, select Code > Polyspace > Options. The
Configuration Parameter window opens to the Polyspace options pane.

2 In the Settings from drop-down menu, select the type of analysis you want
to perform. For descriptions of the different settings, see “Settings from (C)” or
“Settings from (C++)”.

10-2

 Run Analysis for Embedded Coder

Run Analysis for Embedded Coder

Start the Analysis

There are several different types of analyses you can run on code generated with
Embedded Coder. Use the table below to figure out how to start the type of analysis you
want.

Code Type to Analyze What To Select

Code generated from the
top model

From the toolbar, select Code > Polyspace > Verify Code
Generated for > Model.

All code generated as
model referenced code

From the toolbar, select Code > Polyspace > Verify Code
Generated for > Referenced Model.

Model reference code
associated with a specific
block or subsystem

Right-click the Model block or subsystem and select Verify
Code Generated for > Selected Subsystem

Note: You can also start the Polyspace software from the Polyspace configuration
parameter pane by clicking Run verification.

When the Polyspace software starts, messages appear in the MATLAB Command
Window:
Starting Polyspace verification for Embedded Coder

Creating results folder C:\PolySpace_Results\results_my_first_code

 for system my_first_code

Checking Polyspace Model-Link Configuration:

Parameters used for code verification:

 System : my_first_code

 Results Folder : C:\PolySpace_Results\results_my_first_code

 Additional Files : 0

 Remote : 0

 Model Reference Depth : Current model only

 Model by Model : 0

 DRS input mode : DesignMinMax

 DRS parameter mode : None

 DRS output mode : None

...

Follow the progress of the analysis in the MATLAB Command Window. If you are
running a remote, batch, analysis you can follow the later stages through the Polyspace
Job Monitor.

10-3

10 Run Polyspace on Generated Code

The software writes status messages to a log file in the results folder.

Monitor Progress

Local Analyses

For a local Polyspace runs, you can follow the progress of the software in the MATLAB
Command Window. The software also saves the status messages to a log file in the
results folder.

Remote Batch Analyses

For a remote analysis, you can follow the initial stages of the analysis in the MATLAB
Command Window.

Once the compilation phase is complete, you can follow the progress of the software using
the Polyspace Job Monitor.

From Simulink, select Code > Polyspace > Open Job Monitor.

10-4

 Run Analysis for TargetLink

Run Analysis for TargetLink

To start the Polyspace software on TargetLink generated code:

Start the Analysis

1 In your model, select the Target Link subsystem.
2 In the Simulink model window select Code > Polyspace > Verify Code

Generated for > Selected Target Link Subsystem.

Messages appear in the MATLAB Command Window:

Starting Polyspace verification for Embedded Coder

Creating results folder results_WhereAreTheErrors_v2

 for system WhereAreTheErrors_v2

Parameters used for code verification:

 System : WhereAreTheErrors_v2

 Results Folder : H:\Desktop\Test_Cases\ModelLink_Testers

 \results_WhereAreTheErrors_v2

 Additional Files : 0

 Verifier settings : PrjConfig

 DRS input mode : DesignMinMax

 DRS parameter mode : None

 DRS output mode : None

 Model Reference Depth : Current model only

 Model by Model : 0

The exact messages depend on the code generator you use and the Polyspace
product. The software writes status messages to a log file in the results folder.

Follow the progress of the software in the MATLAB Command Window. If you are
running a remote, batch analysis, you can follow the later stages in the Polyspace Job
Monitor.

Monitor Progress

Local Analyses

For a local Polyspace runs, you can follow the progress of the software in the MATLAB
Command Window. The software also saves the status messages to a log file in the
results folder.

10-5

10 Run Polyspace on Generated Code

Remote Batch Analyses

For a remote analysis, you can follow the initial stages of the analysis in the MATLAB
Command Window.

Once the compilation phase is complete, you can follow the progress of the software using
the Polyspace Job Monitor.

From Simulink, select Code > Polyspace > Open Job Monitor.

10-6

 Verify S-Function Code

Verify S-Function Code

If you want to check your S-Function code for bugs or errors, you can run Polyspace
directly from your S-Function block in Simulink.

In this section...

“S-Function Analysis Workflow” on page 10-7
“Compile S-Functions to Be Compatible with Polyspace” on page 10-7
“Example S-Function Analysis” on page 10-8

S-Function Analysis Workflow

To verify an S-Function with Polyspace, follow this recommended workflow:

1 Compile your S-Function to be compatible with Polyspace.
2 Select your Polyspace options.
3 Run a Polyspace Bug Finder analysis using one of the two analysis modes:

• This Occurrence — Analyzes the specified occurrence of the S-Function with
the input for that block.

• All Occurrences — Analyzes the S-Function code with input values from every
occurrence of the S-Function.

4 Review results in the Polyspace interface.

• For information about navigating through your results, see “Filter and Group
Results” on page 5-4.

• For help reviewing and understanding the results, see “Polyspace Bug Finder
Results”.

Compile S-Functions to Be Compatible with Polyspace

Before you analyze your S-Function with Polyspace Bug Finder, you must compile your
S-Function with one of following tools:

• The Legacy Code Tool with the
def.Options.supportCoverageAndDesignVerifier set to true. See
legacy_code.

10-7

10 Run Polyspace on Generated Code

• The SFunctionBuilder block, with Enable support for Design Verifier selected on
the Build Info tab of the SFunctionBuilder dialog box.

• The Simulink Verification and Validation™ function slcovmex, with the option -
sldv. See “Configuring S-Function for Test Case Generation”.

Example S-Function Analysis

This example shows the workflow for analyzing S-Functions with Polyspace. You use the
model psdemo_model_link_sl and the S-Function Command_Strategy.

1 Open the model and use the Legacy Code Tool to compile the S-Function
Command_Strategy.

% Open Model

psdemo_model_link_sl

% Compile S-Function Command_Strategy

def = legacy_code('initialize');

def.SourceFiles = { 'command_strategy_file.c' };

def.HeaderFiles = { 'command_strategy_file.h' };

def.SFunctionName = 'Command_Strategy';

def.OutputFcnSpec = 'int16 y1 = command_strategy(uint16 u1, uint16 u2)';

def.IncPaths = { [matlabroot ...

 '\polyspace\toolbox\pslink\pslinkdemos\psdemo_model_link_sl'] };

def.SrcPaths = def.IncPaths;

def.Options.supportCoverageAndDesignVerifier = true;

legacy_code('compile',def);

2 Open the subsystem psdemo_model_link_sl/controller.
3 Right-click the S-Function block Command_Strategy and select Polyspace >

Options.
4 In the Configuration Parameters dialog box, make sure that the following

parameters are set:

• Product mode — Bug Finder
• Settings from — Project configuration and MISRA C 2012 checking
• Open results automatically after verification — On

5 Apply your settings and close the Configuration Parameters.
6 Right-click the Command_Strategy block and select Polyspace > Verify S-

Function > This Occurrence.

10-8

 Verify S-Function Code

7 Follow the analysis in the MATLAB Command Window. When the analysis is
finished, your results open in the Polyspace interface.

Related Examples
• “Include Handwritten Code” on page 9-3
• “Configure Advanced Polyspace Analysis Options” on page 9-5
• “Polyspace Bug Finder Results”
• “Configuring S-Function for Test Case Generation”

10-9

11

Check Coding Rules from Eclipse

• “Activate Coding Rules Checker” on page 11-2
• “Select Specific MISRA or JSF Coding Rules” on page 11-6
• “Create Custom Coding Rules File” on page 11-9
• “Contents of Custom Coding Rules File” on page 11-11
• “Exclude Files from Analysis” on page 11-12
• “Allow Custom Pragma Directives” on page 11-13
• “Specify Boolean Types” on page 11-14
• “Find Coding Rule Violations” on page 11-15
• “Review Coding Rule Violations” on page 11-16
• “Filter and Group Coding Rule Violations” on page 11-17

11 Check Coding Rules from Eclipse

Activate Coding Rules Checker

This example shows how to activate the coding rules checker before you start an analysis.
This activation enables the Polyspace Bug Finder plug-in to search for coding rule
violations. You can view the coding rule violations in your analysis results.

1 Open project configuration.
2 On the Configuration pane, select Coding Rules & Code Metrics.
3 Select the check box for the type of coding rules that you want to check.

For C code, you can check compliance with:

• MISRA C:2004
• MISRA AC AGC
• MISRA C:2012

If you have generated code, select the Use generated code requirements
option to use the MISRA C:2012 categories for generated code.

• Custom coding rules

For C++ code, you can check compliance with:

• MISRA C++: 2008
• JSF C++
• Custom coding rules

4 For each rule type that you select, from the drop-down list, select the subset of rules
to check.

MISRA C:2004

Option Description

required-rules All required MISRA C:2004 coding rules.
all-rules AllMISRA C:2004 coding rules (required and advisory).

SQO-subset1

A small subset of MISRA C:2004 rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

11-2

 Activate Coding Rules Checker

Option Description

SQO-subset2

A second subset of rules that include the rules in SQO-
subset1 and contain some additional rules. In Polyspace
Code Prover, observing the additional rules can further
reduce the number of unproven results.

custom A set of MISRA C:2004 coding rules that you specify.

MISRA AC AGC

Option Description

OBL-rules All required MISRA AC AGC coding rules.

OBL-REC-rules
All required and recommended MISRA AC AGC coding
rules.

all-rules All required, recommended, and readability coding rules.

SQO-subset1

A small subset of MISRA AC AGC rules. In Polyspace
Code Prover, observing these rules can reduce the number
of unproven results.

SQO-subset2

A second subset of MISRA AC AGC rules that include the
rules in SQO-subset1 and contain some additional rules.
In Polyspace Code Prover, observing the additional rules
can further reduce the number of unproven results.

custom A set of MISRA AC AGC coding rules that you specify.

MISRA C:2012

Option Description

mandatory

All mandatory MISRA C:2012 coding rules. If you have
generated code, also use the Use generated code
requirements option categorization for generated code.

mandatory-required

All mandatory and required MISRA C:2012 coding rules.
If you have generated code, also use the Use generated
code requirements option categorization for generated
code.

all
All MISRA C:2012 coding rules (mandatory, required, and
advisory).

11-3

11 Check Coding Rules from Eclipse

Option Description

SQO-subset1

A small subset of MISRA C rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

SQO-subset2

A second subset of rules that include the rules in SQO-
subset1 and contain some additional rules. In Polyspace
Code Prover, observing the additional rules can further
reduce the number of unproven results.

custom A set of MISRA C:2012 coding rules that you specify.

MISRA C++

Option Description

required-rules All required MISRA C++ coding rules.
all-rules All required and advisory MISRA C++ coding rules.

SQO-subset1

A small subset of MISRA C++ rules. In Polyspace Code
Prover, observing these rules can reduce the number of
unproven results.

SQO-subset2

A second subset of rules with indirect impact on the
selectivity in addition to SQO-subset1. In Polyspace Code
Prover, observing the additional rules can further reduce
the number of unproven results.

custom A specified set of MISRA C++ coding rules.

JSF C++

Option Description

shall-rules Shall rules are mandatory requirements. These rules
require verification.

shall-will-rules All Shall and Will rules. Will rules are intended to be
mandatory requirements. However, these rules do not
require verification.

all-rules All Shall, Will, and Should rules. Should rules are
advisory rules.

custom A set of JSF C++ coding rules that you specify.
11-4

 Activate Coding Rules Checker

5 If you select Check custom rules, specify the path to your custom rules file or click
Edit to create one.

When rules checking is complete, the software displays the coding rule violations in
purple on the Results List pane.

Related Examples
• “Select Specific MISRA or JSF Coding Rules” on page 11-6
• “Create Custom Coding Rules File” on page 11-9

11-5

11 Check Coding Rules from Eclipse

Select Specific MISRA or JSF Coding Rules

This example shows how to specify a subset of MISRA or JSF rules for the coding rules
checker. If you select custom from the MISRA or JSF drop-down list, you must provide a
file that specifies the rules to check.

1 Open the project configuration.
2 In the Configuration tree view, select Coding Rules & Code Metrics.
3 Select the check box for the type of coding rules you want to check.
4 From the corresponding drop-down list, select custom. The software displays a new

field for your custom file.
5 To the right of this field, click Edit. A New File window opens, displaying a table of

rules.

11-6

 Select Specific MISRA or JSF Coding Rules

6 If you already have a customized rule file you want to edit, reload your customization

using the button.
7 Select the rules you want to check.

You can select categories of rules (required, advisory, mandatory), subsets of rules by
rule chapter, or individual rules.

8 When you are finished, click OK.

11-7

11 Check Coding Rules from Eclipse

9 For new files, use the Save As dialog box the opens to save your customization as a
rules file.

10 In the Configuration window, the full path to the rules file appears in the custom
field. To reuse this customized set of rules for other projects, enter this path name in
the dialog box.

Related Examples
• “Activate Coding Rules Checker” on page 11-2
• “Create Custom Coding Rules File” on page 11-9

11-8

 Create Custom Coding Rules File

Create Custom Coding Rules File

This example shows how to create a custom coding rules file. You can use this file to
check names or text patterns in your source code against custom rules that you specify.
For each rule, you specify a pattern in the form of a regular expression. The software
compares the pattern against identifiers in the source code and determines whether the
custom rule is violated.

1 Create a Polyspace project. Add printInitialValue.c to the project.
2 On the Configuration pane, select Coding Rules & Code Metrics. Select the

Check custom rules box.
3

Click .

The New File window opens, displaying a table of rule groups.
4 Specify the rules to check for.

a First, clear the Custom rules check box to turn off checking of custom rules.
b Expand the 4 Structs node. For the option 4.3 All struct fields must follow

the specified pattern:

Column Title Action

Status Select .
Convention Enter All struct fields must

begin with s_ and have capital

letters or digits

Pattern Enter s_[A-Z0-9_]+
Comment Leave blank. This column is for

comments that appear in the coding
rules file alone.

5 Save the file and run the analysis. On the Results List pane, you see two violations
of rule 4.3. Select the first violation.

a On the Source pane, the line int a; is marked.
b On the Result Details pane, you see the error message you had entered, All

struct fields must begin with s_ and have capital letters

11-9

11 Check Coding Rules from Eclipse

6 Right-click on the Source pane and select Open Editor. The file
printInitialValue.c opens in the Code Editor pane or an external text editor
depending on your Preferences.

7 In the file, replace all instances of a with s_A and b with s_B. Rerun the analysis.

The custom rule violations no longer appear on the Results List pane.

Related Examples
• “Activate Coding Rules Checker” on page 11-2
• “Select Specific MISRA or JSF Coding Rules” on page 11-6

More About
• “Contents of Custom Coding Rules File” on page 11-11

11-10

 Contents of Custom Coding Rules File

Contents of Custom Coding Rules File

In a custom coding rules file, each rule appears in the following format:
N.n off|on

convention=violation_message

pattern=regular_expression

• N.n — Custom rule number, for example, 1.2.
• off — Rule is not considered.
• on — The software checks for violation of the rule. After analysis, it displays the

coding rule violation on the Results List pane.
• violation_message — Software displays this text in an XML file within the

Results/Polyspace-Doc folder.
• regular_expression — Software compares this text pattern against a source code

identifier that is specific to the rule. See “Custom Coding Rules”.

The keywords convention= and pattern= are optional. If present, they apply to
the rule whose number immediately precedes these keywords. If convention= is not
given for a rule, then a standard message is used. If pattern= is not given for a rule,
then the default regular expression is used, that is, .*.

Use the symbol # to start a comment. Comments are not allowed on lines with the
keywords convention= and pattern=.

The following example contains three custom rules: 1.1, 8.1, and 9.1.
Custom rules configuration file

1.1 off # Disable custom rule number 1.1

8.1 on # Violation of custom rule 8.1 produces a warning

convention=Global constants must begin by G_ and must be in capital letters.

pattern=G_[A-Z0-9_]*

9.1 on # Non-adherence to custom rule 9.1 produces a warning

convention=Global variables should begin by g_.

pattern=g_.*

Related Examples
• “Create Custom Coding Rules File” on page 11-9

11-11

11 Check Coding Rules from Eclipse

Exclude Files from Analysis

This example shows how to specify files that you do not want analyzed. For instance,
sometimes, for a precise analysis, you have to add header files from a third-party library
to your Polyspace project, but you cannot address defects in those header files. Therefore,
you do not want analysis results on those files.

By default:

• Results are generated for all source files and header files in the same folders as source
files.

• Results are not generated for the remaining header files in your project.

You can change this default behavior and specify your own set of files on which you do
not want results.

1 Open the project configuration.
2 In the Configuration tree view, select Inputs & Stubbing.
3 Use a combination of the following options to suppress results from files in which you

are not interested.

• Do not generate results for (-do-not-generate-results-for)
• Generate results for sources and (-generate-results-for)

For instance, you can suppress results from certain folders and unsuppress them
only for certain files in those folders.

Related Examples
• “Customize Analysis Options” on page 12-3

11-12

 Allow Custom Pragma Directives

Allow Custom Pragma Directives

This example shows how to exclude custom pragma directives from coding rules
checking. MISRA C rule 3.4 requires checking that pragma directives are documented
within the documentation of the compiler. However, you can allow undocumented
pragma directives to be present in your code.

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules & Code Metrics.
3

To the right of Allowed pragmas, click .

In the Pragma view, the software displays an active text field.
4 In the text field, enter a pragma directive.
5

To remove a directive from the Pragma list, select the directive. Then click .

Related Examples
• “Activate Coding Rules Checker” on page 11-2

11-13

11 Check Coding Rules from Eclipse

Specify Boolean Types

This example shows how to specify data types you want Polyspace to consider as Boolean
during MISRA C rules checking. The software applies this redefinition only to data types
defined by typedef statements.

The use of this option is related to checking of the following rules:

• MISRA C:2004 and MISRA AC AGC —12.6, 13.2, 15.4.

For more information, see “MISRA C:2004 and MISRA AC AGC Coding Rules” on
page 2-14.

• MISRA C:2012 — 10.1, 10.3, 10.5, 14.4 and 16.7

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules & Code Metrics.
3

To the right of Effective boolean types, click .

In the Type view, the software displays an active text field.
4 In the text field, specify the data type that you want Polyspace to treat as Boolean.
5

To remove a data type from the Type list, select the data type. Then click .

Related Examples
• “Activate Coding Rules Checker” on page 11-2

11-14

 Find Coding Rule Violations

Find Coding Rule Violations

This example shows how to check for coding rule violations alone.

1 Open project configuration.
2 In the Configuration tree view, select Coding Rules & Code Metrics. Activate

the desired coding rule checker.

For more information, see “Activate Coding Rules Checker” on page 3-2.
3 If you select certain rules, the analysis can complete quicker than checking other

rules.

For more information, see “Coding Rule Subsets Checked Early in Analysis” on page
2-61.

4 Specify that the analysis must not look for defects.

• In the Configuration tree view, select Bug Finder Analysis.
• Clear the Find defects check box.

5
Click to run the coding rules checker without checking defects.

Related Examples
• “Activate Coding Rules Checker” on page 11-2
• “Select Specific MISRA or JSF Coding Rules” on page 11-6
• “Review Coding Rule Violations” on page 11-16

11-15

11 Check Coding Rules from Eclipse

Review Coding Rule Violations

This example shows how to review coding rule violations once code analysis is complete.
After analysis, the Results List - Bug Finder tab displays the rule violations with a

• symbol for predefined coding rules such as MISRA C:2004.
• symbol for custom coding rules.

In addition, Polyspace Bug Finder highlights defects in your source code in the following
ways:

• A or mark appears before the line number on the left.
• A icon appears in the overview ruler to the right of the line containing the rule

violation.

To further review a coding rule violation and determine your course of action:

1 Select the coding rule violation on the Results List - Bug Finder tab.
2 On the Result Details pane, view the location and description of the violated rule.

In the source code, the line containing the violation appears highlighted.
3

For MISRA C: 2012 rules, on the Result Details pane, click the icon to see the
rationale for the rule. In some cases, you can also see code examples illustrating the
violation.

4 Review the violation in your code.

a Determine whether you must fix the code to avoid the violation.
b If you choose to retain the code, on the Result Details pane, add a comment

explaining why you retain the code. This comment helps you or other reviewers
avoid reviewing the same coding rule violation twice.

You can also assign a Severity and Status to the coding rule violation.
5 After you have fixed or justified the coding rule violations, run the analysis again.

Related Examples
• “Activate Coding Rules Checker” on page 11-2
• “Find Coding Rule Violations” on page 11-15
• “Filter and Group Coding Rule Violations” on page 11-17

11-16

 Filter and Group Coding Rule Violations

Filter and Group Coding Rule Violations
This example shows how to use filters in the Results List pane to focus on specific kinds
of coding rule violations. By default, the software displays both coding rule violations and
defects.

In this section...

“Filter Coding Rules” on page 11-18
“Group Coding Rules” on page 11-18
“Suppress Certain Rules from Display in One Click” on page 11-18

Filter Coding Rules

1
On the Results List pane, select the icon on the Check column header.

2 From the context menu, clear the All check box.
3 Select the violated rule numbers that you want to focus on.
4 Click OK.

To filter out all results other than coding rule violations, use the filters on the Type or
Family column header.

You can also filter rule violations using the Coding rule violations by rule (Top 10
only) graph on the Dashboard pane in the Polyspace user interface. See “Filter and
Group Results” on page 5-4.

Group Coding Rules

1 On the Results List pane, from the list, select Family.

The rules are grouped by numbers. Each group corresponds to a certain code
construct.

2 Expand the group nodes to select an individual coding rule violation.

Suppress Certain Rules from Display in One Click

Instead of filtering individual rules from display each time you open your results, you
can limit the display of rule violations in one click. Use the drop-down list in the left of

11-17

11 Check Coding Rules from Eclipse

the Results List pane toolbar. You can add some predefined options to this list or create
your own options. You can share the option file to help developers in your organization
review violations of at least certain coding rules.

1 In the Polyspace user interface, select Tools > Preferences.
2 On the Review Scope tab, do one of the following:

• To add predefined options to the drop-down list on the Results List pane, select
Include Quality Objectives Scopes.

The Scope Name list shows additional options, HIS, SQO-4, SQO-5, and SQO-6.
Select an option to see which rules are suppressed from display.

In addition to coding rule violations, the options impose limits on the display of
code metrics and defects.

• To create your own option in the drop-down list on the Results List pane, select
New. Save your option file.

On the left pane, select a rule set such as MISRA C:2012. On the right pane, to
suppress a rule from display, clear the box next to the rule.

To suppress all rules belonging to a group such as The essential type model,
clear the box next to the group name. For more information on the groups, see
“Coding Rules”. If only a fraction of rules in a group is selected, the check box
next to the group name displays a symbol.

To suppress all rules belonging to a category such as advisory, clear the box
next to the category name on the top of the right pane. If only a fraction of rules
in a category is selected, the check box next to the category name displays a
symbol.

11-18

 Filter and Group Coding Rule Violations

3 Select Apply or OK.

On the Results List pane, the drop-down list on the Results List pane displays the
additional options.

4 Select the option that you want. The rules that you suppress do not appear on the
Results List pane.

Related Examples
• “Activate Coding Rules Checker” on page 11-2
• “Review Coding Rule Violations” on page 11-16

11-19

12

Find Bugs from Eclipse

• “Run Analysis” on page 12-2
• “Customize Analysis Options” on page 12-3

12 Find Bugs from Eclipse

Run Analysis

1 Switch to the Polyspace perspective.

a Select Window > Open Perspective > Other.
b In the Open Perspective dialog box, select Polyspace.

This allows you to view only the information related to a Polyspace analysis.
2 If you previously ran a Polyspace Code Prover verification, open the Polyspace Run

- Code Prover view. In the dropdown list beside the icon, select Bug Finder.
3 To start an analysis, do one of the following:

• In the Project Explorer, right-click the project containing the files that you
want to verify and select Run Polyspace Bug Finder.

• In the Project Explorer, select the project containing the files that you want to
verify. From the global menu, select Polyspace > Run.

You can follow the progress of the analysis in the Polyspace Run - Bug Finder
view. If you see an error or warning during the compilation phase, double-click it
to go to the corresponding location in the source code. Once the analysis is over, the
results are displayed in the Results List - Bug Finder view.

4 If results are available, the icon in the Polyspace Run - Bug Finder view turns

to . Click the icon to load available results.

With your results open, if additional results are available, the icon is still visible.

Click the icon to load all available results.
5 To stop an analysis, select Polyspace > Stop. Alternatively you can use the

button in the Polyspace Run - Bug Finder view.

12-2

 Customize Analysis Options

Customize Analysis Options

Polyspace analysis in Eclipse uses a set of default analysis options preconfigured for your
coding language and operating system. For each project, you can customize the analysis
options further.

• Compiler options: You specify the compiler that you use, the libraries that you include
and the macros that are defined for your compilation. If your Eclipse project directly
refers to a compilation toolchain, the analysis extracts the compiler options from the
project. If the project refers to your compilation toolchain through a build command,
the analysis cannot extract the compiler options. Trace the build command to extract
the options.

• Other options: Through the other options, you specify which analysis results you
want and how precise you want them to be. If the default values of the options are not
optimal for your situation, change them. For instance, the default analysis checks for
certain defects only. If you also want coding rule violations, specify the type of rules
that you want checked.

Eclipse Refers Directly to Your Compilation Toolchain

When setting up your Eclipse project, you might be directly referring to your compilation
toolchain without using a build command. For instance, you might refer to the MinGW
GCC toolchain in the project setup wizard as below. If you directly refer to your
compilation toolchain in the Eclipse project, configure the analysis as follows.

12-3

12 Find Bugs from Eclipse

Compiler Options

The compiler options from your Eclipse project, such as include paths and preprocessor
macros, are reused for the analysis.

You cannot view the options directly in the Polyspace configuration but you can view
them in your Eclipse editor. In your project properties (Project > Properties), in the
Paths and Symbols node:

• See the include paths under the Includes tab.

During analysis, the paths are implicitly used with the analysis option -I.
• See the preprocessor macros under the Symbols tab.

During analysis, the macros are implicitly used with the analysis option Preprocessor
definitions (-D).

Other Options

You specify other options not related to your compiler directly in the Polyspace
configuration. To open the Polyspace Bug Finder Configuration window, select

12-4

 Customize Analysis Options

Polyspace > Configure Project. Specify the analysis options and save them. For more
information, see “Analysis Options”.

Eclipse Uses Your Compilation Toolchain Through Build Command

When setting up your Eclipse project, instead of specifying your compilation toolchain
directly, you might be specifying it through a build command. For instance, in the Wind
River Workbench IDE (an Eclipse-based IDE), you might specify your build command as
shown in the following figure. If you refer to your compilation toolchain through a build
command, configure the analysis as follows.

Compiler Options

If you use a build command for compilation, the analysis cannot automatically extract
the compiler options. You must trace your build command.

1 Replace your build command:

matlabroot\polyspace\bin\polyspace-configure.exe -output-project

 PolyspaceWorkspace\Projects\EclipseProjects\Name\Name.psprj BuildCommand

Here:

• matlabRoot is the MATLAB installation folder.
• polyspaceworkspace is the folder where your Polyspace files are stored. You

specify this location on the Project and Results Folder tab in your Polyspace
preferences (Tools > Preferences in the Polyspace user interface).

12-5

12 Find Bugs from Eclipse

• projectName is the name of your Eclipse project.
• buildCommand is the original build command that you want to trace.

For instance, in the preceding example, buildCommand is the following:

%makeprefix% make --no-print-directory

2 Build your Eclipse project. Perform a clean build so that files are recompiled.

For instance, select the option Project > Clean. Normally, the option runs your
build command. With your replacement in the previous step, the option also traces
the build to extract the compiler options.

3 Restore the original build command and restart Eclipse.

You can now run analysis on your Eclipse project. The analysis uses the compiler
options that it has extracted.

Other Options

You can specify other options not related to your compiler directly in the Polyspace
configuration. Select Polyspace > Configure Project to open the Polyspace Bug
Finder Configuration window. Specify the analysis options and save them. For more
information, see For more information, see “Analysis Options”.

Related Examples
• “Run Analysis” on page 12-2

12-6

13

View Results in Eclipse

• “View Results” on page 13-2
• “Review and Fix Results” on page 13-4
• “Limit Display of Defects” on page 13-6
• “Filter and Group Results” on page 13-8
• “Understanding the Results Views” on page 13-11

13 View Results in Eclipse

View Results

This example shows how to view Polyspace Bug Finder results. After you run an
analysis, you can view the results either in Eclipse or from the Polyspace Bug Finder
interface.

In this section...

“View Results in Eclipse” on page 13-2
“View Results in Polyspace Environment” on page 13-2
“Results Location” on page 13-2

View Results in Eclipse

After you run an analysis in Eclipse, your results automatically appear on the Results
List - Bug Finder tab.

• If you closed the Results List - Bug Finder tab, select Polyspace > Show View >
Show Results List view to reopen the tab.

• If you need to reload the results, select Polyspace > Reload results.

This option is useful when you reopen Eclipse or when you are switching between
Polyspace projects.

View Results in Polyspace Environment

To view your results in the Polyspace Bug Finder interface, select Polyspace > Open
Results in PVE.

Note: You can view defects, coding rule violations and code metrics from the Eclipse
environment. However, you can impose limits on metrics only from the Polyspace
environment. For more information, see “Review Code Metrics” on page 5-33.

Results Location

Polyspace stores your results from Eclipse in the following folder:

Polyspace_Workspace\EclipseProjects\Project_Name

13-2

 View Results

Where Project_Name is the name of your Eclipse project and Polyspace_Workspace
is the default Polyspace project location. You can change the Polyspace_Workspace in
the Polyspace interface preferences.

1 In the Polyspace interface, select Tools > Preferences.
2 On the Project and Results Folder tab, change the value of the Default project

location.

If you prefer to store your results within your Eclipse project, inside your Eclipse project
folder, create a folder named polyspace. Polyspace will save your analysis results inside
this folder.

Related Examples
• “Run Analysis” on page 12-2
• “Open Results” on page 5-2

13-3

13 View Results in Eclipse

Review and Fix Results

This example shows how to review and comment results obtained from a Polyspace Bug
Finder analysis. When reviewing results, you can assign a status and severity to the
defects and enter comments to describe the results of your review. These actions help you
to track the progress of your review and avoid reviewing the same defect twice. If you run
successive analyses on the same project, the review status, severity and comments from
the previous analysis will be automatically imported into the next.

After analysis, the results appear on the Results List - Bug Finder tab. In addition,
Polyspace Bug Finder highlights defects in your source code in the following ways:

• An ! mark appears before the line number on the left.
• The operation containing the defect has a wavy red underlining.
• A icon appears in the overview ruler to the right of the line containing the defect.
• A icon appears at the top of the overview ruler. If you place your cursor on the icon,

a tooltip states the total number of defects in the file.

To further review a defect and determine your course of action:

1 On the Results List - Bug Finder tab, select the defect that you want to review.

The Result Details pane displays information about the current defect.
2

On the Result Details pane, click the icon to see a brief description and code
examples for the defect. In some cases, you can also see risks associated with not
fixing the defect and a suggested fix.

3 Investigate the result further. Determine whether to fix your code, review the result
later, or retain the code but provide some explanation.

4 On the Result Details pane, provide the following review information for the result:

• Severity to describe how critical you consider the issue.
• Status to describe how you intend to address the issue.

You can also create your own status or associate justification with an existing
status from the Polyspace user interface. Select Tools > Preferences and create
or modify statuses on the Review Statuses tab.

• Comment to describe any other information about the result.

13-4

 Review and Fix Results

5 To provide review information for several results together, select the results. Then,
provide review information for a single result.

To select the results in a group:

• If the results are contiguous, left-click the first result. Then Shift-left click the
last result.

To group certain results together, use the column headers on the Results List -
Bug Finder tab.

• If the results are not contiguous, Ctrl-left click each result.
• If the results belong to the same group and have the same color, right-click one

result. From the context menu, select Select All Type Results.

For instance, select Select All "Memory leak" Results.
6 To save your review comments, select File > Save. Your comments are saved with

the analysis results.

Related Examples
• “View Results” on page 13-2
• “Filter and Group Results” on page 13-8

13-5

13 View Results in Eclipse

Limit Display of Defects
This example shows how to control the number and type of defects displayed in Eclipse
on the results list. To reduce your review effort, you can limit the number of defects to
display for certain checks or suppress them altogether.

To prevent the analysis from looking for some defects, see “Choose Specific Defects” on
page 4-2.

If you do not want to change your analysis configuration, you can still change which
defects are displayed in your results. There are two ways to filter defects from your
results:

• Filter individual defects from display after each run.

For more information, see “Filter and Group Results” on page 13-8.
• Create a set of filters that you can apply in one click, called a scope.

This example shows how to create a scope:

1 Select Polyspace > Configure Project.
2 On the configuration window, select Tools > Preferences.
3 On the Review Scope tab, create your filter file.

a Select New. Save your filter file.
b On the left pane, select Defect. On the right pane, to suppress a defect

completely, clear the box for the defect. To suppress a defect partly, specify a
percentage less than 100 to display.

Instead of a percentage, you can specify a number or the string ALL. To specify a
number, clear the box Specify percentage of checks.

To suppress all defects belonging to a category such as Numerical, clear the box
next to the category name. For more information on the categories, see “Defects”.
If only a fraction of defects in a category are selected, the check box next to the
category name displays a symbol.

To suppress all defects with a certain impact such as Low, clear the box next
to the impact. For more information on impacts, see “Classification of Defects
by Impact” on page 5-8. If only a fraction of defects with a certain impact are
selected, the check box next to the impact displays a symbol.

13-6

 Limit Display of Defects

4 Select Apply or OK.

On the Results List pane, a menu displays the list of review scopes. The default
scopes are All and Defects & Rules.

5 Select the option corresponding to the filters that you want. Only the number or
percentage of defects that you specify remain on the Results List pane.

• If you specify an absolute number, Polyspace displays that number of defects.
• If you specify a percentage, Polyspace displays that percentage of the total

number of defects.

Related Examples
• “Filter and Group Results” on page 13-8

13-7

13 View Results in Eclipse

Filter and Group Results

This example shows how to filter and group defects on the Results List - Bug Finder
tab. To organize your review of results, use filters and groups when you want to:

• Review only high-impact defects.

For more information on impact, see “Classification of Defects by Impact” on page 5-8.
• Review certain types of defects in preference to others.

For instance, you first want to address the defects resulting from Missing or invalid
return statement.

• Review only new results found since the last analysis.
• Not address the full set of coding rule violations detected by the coding rules checker.
• Review only those defects that you have already assigned a certain status.

For instance, you want to review only those defects to which you have assigned the
status, Investigate.

• Review defects from a particular file or function. Because of continuity of code,
reviewing these defects together can help you organize your review process.

If you have written the code for a particular source file, you can review the defects
only in that file.

In this section...

“Filter Results” on page 13-8
“Group Results” on page 13-9

Filter Results

• To filter results from the Results List - Bug Finder tab, click the icon on
the appropriate column. Clear All. Select the boxes for the results that you want
displayed.

Item to Filter Column

Results in a certain file or function File or Function

13-8

 Filter and Group Results

Item to Filter Column

Defects of a certain type, for instance,
Integer division by zero

Check

The column does not appear if you group
checks by family. See “Group Results” on
page 13-9.

Results with a certain severity or status Severity or Status
Results in a certain group such as
numerical or data flow

Group

Results with a certain impact Information
Results that correspond to certain CWE
IDs.

CWE ID

For more information, see “Find CWE
Identifiers from Defects” on page 5-64.

• To review only new results found since the last analysis, on the Results List - Bug

Finder tab, select .
• To suppress code metrics from your results, from the drop-down list in the left of the

Results List - Bug Finder tab, select Defects & Rules.

You can increase the options on this list or create your own options from the
Polyspace user interface. For examples, see:

• “Suppress Certain Rules from Display in One Click” on page 3-18
• “Limit Display of Defects” on page 5-16
• “Review Code Metrics” on page 5-33

Note: You can also apply multiple filters.

Group Results

On the Results List - Bug Finder tab, from the list, select an option.

• To show results without grouping, select None.
• To show results grouped by result type, select Family.

13-9

13 View Results in Eclipse

• The defects are organized by the defect groups. For more information on the
groups, see “Defects”.

• The coding rule violations are grouped by type of coding rule. For more
information, see “Coding Rules”.

• The code metrics are grouped by scope of metric. For more information, see “Code
Metrics”.

• To show results grouped by file, select File.

Within each file, the results are grouped by function. The results that are not
associated with a particular function are grouped under File Scope.

• For C++ code, to show results grouped by class, select Class. The results that are not
associated with a particular class are grouped under Global Scope.

Within each class, the results are grouped by method.

Related Examples
• “View Results” on page 13-2
• “Review and Fix Results” on page 13-4

13-10

 Understanding the Results Views

Understanding the Results Views

In this section...

“Results List” on page 13-11
“Result Details” on page 13-13

Results List

The Results List - Bug Finder tab lists the defects and coding rule violations along
with their attributes. To organize your results review, from the list on this tab,
select one of the following options:

• None: Lists defects and coding rule violations without grouping. By default the
results are listed in order of severity.

• Family: Lists results grouped by defect group. For more information on the defect
groups, see “Bug Finder Defect Groups” on page 5-55.

• Class: Lists results grouped by class. Within each class, the results are grouped
by method. The first group, Global Scope, lists results not occurring in a class
definition.

This option is available for C++ code only.
• File: Lists results grouped by file. Within each file, the results are grouped by

function.

For each defect, the Results List pane contains the defect attributes, listed in columns:

Attribute Description

Family Grouping to which the defect belongs. For example, if you
choose the Checks by File/Function grouping, this column
contains the name of the file and function containing the
defect.

ID Unique identification number of the defect. In the default view
on the Results List - Bug Finder tab, the defects appear
sorted by this number.

Type Defect or coding rule violation.

13-11

13 View Results in Eclipse

Attribute Description

Group Category of the defect. For more information on the defect
groups, see “Bug Finder Defect Groups” on page 5-55.

Check Description of the defect
CWE ID CWE ID-s that correspond to the defect. For more information,

see “Mapping Between CWE Identifiers and Defects” on page
5-66.

File File containing the instruction where the defect occurs
Class Class containing the instruction where the defect occurs. If the

defect is not inside a class definition, then this column contains
the entry, Global Scope.

Function Function containing the instruction where the defect occurs.
If the function is a method of a class, it appears in the format
class_name::function_name.

Severity Level of severity you have assigned to the defect. The possible
levels are:

• High

• Medium

• Low

• Not a defect

Status Review status you have assigned to the check. The possible
statuses are:

• Fix

• Improve

• Investigate

• Justified

• No action planned

• Other

Comments Comments you have entered about the check

To show or hide any of the columns, right-click anywhere on the column titles. From the
context menu, select or clear the title of the column that you want to show or hide.

13-12

 Understanding the Results Views

Using this pane, you can:

• Navigate through the checks. For more information, see “Review and Fix Results” on
page 13-4.

• Organize your check review using filters on the columns. For more information, see
“Filter and Group Results” on page 13-8.

Result Details

The Result Details pane contains detailed information about a specific defect. Select
a defect on the Results List - Bug Finder tab to reveal further information about the
defect on the Result Details pane.

• The top right hand corner shows the file and function containing the defect, in the
format file_name/function_name.

• The yellow box contains the name of the defect, along with an explanation.
• The Event column lists the sequence of code instructions causing the defect. The

Scope column lists the name of the function containing the instructions. The Line
column lists the line number of the instructions.

• The Variable trace check box when selected reveals an additional set of instructions
that are related to the defect.

•
The button allows you to access documentation for the defect.

13-13

14

Check Coding Rules from Microsoft
Visual Studio

• “Activate C++ Coding Rules Checker” on page 14-2
• “Exclude Files from Analysis” on page 14-4

14 Check Coding Rules from Microsoft Visual Studio

Activate C++ Coding Rules Checker

To check coding rule compliance, before running an analysis, you must set an option in
your project. Polyspace software finds the violations during the compile phase. You can
view coding rule violations alongside your analysis results.

To set the rule checking option:

1 Select the files you wish to analyze.
2 Right-click on your selection and select Edit Polyspace Configuration.
3 In the Polyspace Bug Finder Configuration window, from the Configuration tree,

select Coding Rules & Code Metrics.
4 Under Coding Rules & Code Metrics, select the check box next to the type of

coding rules you wish to check.

For C++ code, you can check compliance with MISRA C++ or JSF C++, and a custom
rules file.

5 For MISRA and JSF rule checking, you can select a subset of rules to check from the
corresponding drop-down list.

The tables below show the options for each coding rule set:

MISRA C++

Option Explanation

required-rules
All required MISRA C++ coding rules. Violations are
reported as warnings.

all-rules
All required and advisory MISRA C++ coding rules.
Violations are reported as warnings.

SQO-subset1

A subset of MISRA C++ rules that have a direct impact on
the selectivity. Violations are reported as warnings. For
more information, see “Software Quality Objective Subsets
(C++)” on page 2-81.

SQO-subset2

A second subset of rules that have an indirect impact on
the selectivity, as well as the rules contained in SQO-
subset1. Violations are reported as warnings. For more
information, see “Software Quality Objective Subsets (C+
+)” on page 2-81.

14-2

 Activate C++ Coding Rules Checker

Option Explanation

custom

A specified set of MISRA C++ coding rules. When you
select this option, you must specify the MISRA C++ rules
to check and whether to report an error or warning for
violations of each rule. For more information, see “Select
Specific MISRA or JSF Coding Rules” on page 3-6.

JSF C++

Option Explanation

shall-rules All Shall rules, which are mandatory rules that require
checking.

shall-will-rules All Shall and Will rules. Will rules are mandatory rules
that do not require checking.

all-rules All Shall, Will, and Should rules. Should rules are
advisory rules.

custom A specified set of JSF C++ coding rules. When you select
this option, you must specify the JSF C++ rules to check
and whether to report an error or warning for violations
of each rule. For more information, see “Select Specific
MISRA or JSF Coding Rules” on page 3-6.

6 For Custom rule checking, in the corresponding field, specify the path to your custom
rules file or click Edit to create one. See “Create Custom Coding Rules” on page 3-9
for more information.

7 Save you changes and close the configuration window.

When you run an analysis, Polyspace checks coding rule compliance during the
compilation phase of the analysis.

14-3

14 Check Coding Rules from Microsoft Visual Studio

Exclude Files from Analysis

This example shows how to specify files that you do not want analyzed. For instance,
sometimes, you have to add header files from a third-party library to your Polyspace
project for a precise analysis, but you cannot address defects in those header files.
Therefore, you do not want analysis results on those files.

By default:

• Results are generated for all source files and header files in the same folders as source
files.

• Results are not generated for the remaining header files in your project.

You can change this default behavior and specify your own set of files on which you do
not want results.

1 Open the project configuration.
2 In the Configuration tree view, select Inputs & Stubbing.
3 Use a combination of the following options to suppress results from files in which you

are not interested.

• Do not generate results for (-do-not-generate-results-for)
• Generate results for sources and (-generate-results-for)

For instance, you can suppress results from certain folders and unsuppress them
only for certain files in those folders.

Related Examples
• “Customize Polyspace Options” on page 15-8

14-4

15

Find Bugs from Microsoft Visual
Studio

• “Run Polyspace in Visual Studio” on page 15-2
• “Monitor Progress in Visual Studio” on page 15-5
• “Customize Polyspace Options” on page 15-8
• “Configuration File and Default Options” on page 15-9
• “Bug Finding in Visual Studio” on page 15-10

15 Find Bugs from Microsoft Visual Studio

Run Polyspace in Visual Studio

To set up and start an analysis:

1 In the Solution Explorer view, select one or more files that you want to analyze.
2 Right-click the selection, and select Polyspace Verification.

The Easy Settings dialog box opens.

3 In the Easy Settings dialog box, you can specify the following options for your
analysis:

15-2

 Run Polyspace in Visual Studio

• Under Settings, configure the following:

• Precision — Precision of analysis
• Passes — Level of analysis
• Results folder – Location where software stores analysis results

• Under Verification Mode Settings, configure the following:

• Generate main — Polyspace generates a main or Use existing — Polyspace
uses an existing main

• Class — Name of class to analyze
• Class analyzer calls — Functions called by generated main
• Class only — Analysis of class contents only
• Main generator write — Type of initialization for global variables
• Main generator calls — Functions (not in a class) called by generated main
• Function called before main — Function called before the generated main

• Under Scope, you can modify the list of files and C++ classes to analyze.

a Select . The Select Files and Classes dialog box opens.

15-3

15 Find Bugs from Microsoft Visual Studio

b Select the classes that you want to analyze, then click Add.

In the Configuration pane in the Polyspace environment, you can configure advanced
options not in the Easy Settings dialog box. See “Customize Polyspace Options” on
page 15-8.

4 Make sure the Use Code Prover analysis check box is cleared.
5 Click Start to start the analysis.

To follow the progress of an analysis, see “Monitor Progress in Visual Studio” on
page 15-5

15-4

 Monitor Progress in Visual Studio

Monitor Progress in Visual Studio

Local Analysis

1 Open the Polyspace Log view to follow the progress of your analysis.

If Polyspace finds compilation issues, the errors are highlighted as links. Click a link
to display the file and line that produced the error.

15-5

15 Find Bugs from Microsoft Visual Studio

15-6

 Monitor Progress in Visual Studio

2 To stop an analysis, on the Polyspace Log toolbar, click X.

Remote Analysis

1 Open the Polyspace Log view to follow the progress of your analysis.

If Polyspace finds compilation issues, the errors are highlighted as links. Click a link
to display the file and line that produced the error.

To stop an analysis during the compilation phase, on the Polyspace Log toolbar,
click X.

After compilation, Polyspace sends your analysis to the remote server.
2 Select Polyspace > Job Monitor.
3 In the Polyspace Job Monitor, right-click your project and select View Log File

To stop a remote analysis after compilation, use the Job Monitor interface.

Related Examples
• “Run Polyspace in Visual Studio” on page 15-2
• “Open Results in Polyspace Environment” on page 16-2

15-7

15 Find Bugs from Microsoft Visual Studio

Customize Polyspace Options

In the Easy Settings dialog box in Visual Studio, you specify only a subset of the
Polyspace analysis options.

To customize other analysis options:

1 Select the files you wish to analyze.
2 Right-click on your selection and select Edit Polyspace Configuration from the

context menu.
3 In the Polyspace Bug Finder configuration window, use the different panes to

customize your analysis options.

For more information about specific options, see “Analysis Options”.
4 Save your changes and close the configuration window.

Next time you run an analysis, Polyspace uses the
ProjectName_UserSettings.psprj settings.

15-8

 Configuration File and Default Options

Configuration File and Default Options

Some options are set by default while others are extracted from the Visual Studio project
and stored in the associated Polyspace configuration file.

• The following table shows Visual Studio options that are extracted automatically, and
their corresponding Polyspace options:

Visual Studio Option Polyspace Option

/D <name> -D <name>

/U <name> -U <name>

/MT -D_MT

/MTd -D_MT -D_DEBUG

/MD -D_MT -D_DLL

/MDd -D_MT -D_DLL -D_DEBUG

/MLd -D_DEBUG

/Zc:wchar_t -wchar-t-is keyword

/Zc:forScope -for-loop-index-scope in

/Zp[1,2,4,8,16] -pack-alignment-value [1,2,4,8,16]

• Source and include folders (-I) are also extracted automatically from the Visual
Studio project.

• Default options passed to the kernel depend on the Visual Studio release: -compiler
Visual7.1 (or -compiler visual8)-target i386

15-9

15 Find Bugs from Microsoft Visual Studio

Bug Finding in Visual Studio

You can apply the bug finding functionality of Polyspace software to code that you
develop within the Visual Studio Integrated Development Environment (IDE).

A typical workflow is:

1 Use the Visual Studio editor to create a project and develop code within this project.
2 Set up the Polyspace analysis by configuring analysis options and settings, and then

start the analysis.
3 Monitor the analysis.
4 Open the verification results and review in the Polyspace environment.

Before you can verify code in Visual Studio, you must install the Polyspace add-in for
Visual Studio. For more information , see “Install Polyspace Add-In for Visual Studio”.

15-10

16

Open Results from Microsoft Visual
Studio

16 Open Results from Microsoft Visual Studio

Open Results in Polyspace Environment

After your analysis finishes running in Visual Studio, open the Polyspace environment to
view your results. If you ran a server analysis, download the results before opening the
Polyspace environment.

To view your results:

•
From the Polyspace Log window, select .

• Select Polyspace > Polyspace.

Then, open your results from the Polyspace interface. For instructions, see “Open
Results” on page 5-2.

Related Examples
• “Review and Fix Results” on page 5-30
• “Run Polyspace in Visual Studio” on page 15-2

16-2

17

Troubleshooting in Polyspace Bug
Finder

• “License Error –4,0” on page 17-3
• “View Error Information When Analysis Stops” on page 17-4
• “Contact Technical Support” on page 17-7
• “Polyspace Cannot Find the Server” on page 17-9
• “Job Manager Cannot Write to Database” on page 17-10
• “C/C++ Compilation: Undefined Identifier” on page 17-12
• “C/C++ Compilation: Unknown Function Prototype” on page 17-16
• “C/C++ Compilation: Missing Identifiers with Keil or IAR Compiler” on page 17-18
• “C/C++ Compilation: #error Directive” on page 17-19
• “C/C++ Compilation: Object is Too Large” on page 17-21
• “Linking: Body of Assertion or Memory Allocation Function Discarded” on page

17-24
• “Error from Special Characters” on page 17-25
• “C++ Compilation: In-Class Initialization” on page 17-26
• “C++ Compilation: Double Declarations of Standard Template Library Functions” on

page 17-27
• “C++ Compilation: GNU Compiler” on page 17-28
• “C++ Compilation: ISO versus Default” on page 17-31
• “C++ Compilation: Visual Compilers” on page 17-33
• “Eclipse Java Version Incompatible with Polyspace Plug-in” on page 17-35
• “Insufficient Memory During Report Generation” on page 17-37
• “Error from Disk Defragmentation and Antivirus Software” on page 17-38
• “Troubleshooting Project Creation from Visual Studio Build” on page 17-39

17 Troubleshooting in Polyspace Bug Finder

• “Compiler Not Supported for Project Creation from Build Systems” on page 17-41
• “Slow Build Process When Polyspace Traces the Build” on page 17-49
• “Check if Polyspace Supports Windows Build Command” on page 17-50

17-2

 License Error –4,0

License Error –4,0

Issue

When you try to run Polyspace, you get this error message:

License Error –4,0

Cause

Polyspace Bug Finder can be opened simultaneously with Polyspace Code Prover or a
second instance of Polyspace Bug Finder. However, only one code analysis can run at a
time.

If you try to run Polyspace processes from multiple windows, you will get a License
Error –4,0 error.

Solution

Only run one analysis at a time, including any command-line or plugin analyses.

17-3

17 Troubleshooting in Polyspace Bug Finder

View Error Information When Analysis Stops

If the analysis stops, you can view error information on the screen, either in the user
interface or at the command-line terminal. Alternatively, you can view error information
in a log file generated during analysis. Based on the error information, you can either fix
your source code, add missing files or change analysis options to get past the error.

View Error Information in User Interface

1 View the errors on the Output Summary tab.

The messages on this tab appear with the following icons.

Icon Meaning

Error that blocks analysis.

For instance, the analysis cannot find a variable declaration or
definition and therefore cannot determine the variable type.
Warning about an issue that does not block analysis by itself,
but could be related to a blocking error.

For instance, the analysis cannot find an include file that is
#include-d in your code. The issue does not block the analysis
by itself, but if the include file contains the definition of a
variable that you use in your source code, you can face an error
later.
Additional information about the analysis.

2 To diagnose and fix each error, you can do the following:

• To see further details about the error, select the error message. The details
appear in a Detail window below the Output Summary tab.

• To open the source code at the line containing the error, double-click the message.

Tip To search the error messages for a specific term, on the Search pane, enter your
search term. From the drop down list on this pane, select Output Summary or Run
Log. If the Search pane is not open by default, select Windows > Show/Hide View >
Search.

17-4

 View Error Information When Analysis Stops

View Error Information in Log File

You can view errors directly in the log file. The log file is in your results folder. To open
the log file:

1 Right-click the result folder name on the Project Browser pane. From the context
menu, select Open Folder with File Manager.

2 Open the log file, Polyspace_R20##n_ProjectName_date-time.log
3 To view the errors, scroll through the log file, starting at the end and working

backward.

The following example shows sample log file information. The error has occurred
because a variable var used in the code is not defined earlier.

C:\missing_include.c, line 4: error: identifier "var" is undefined

| var = func();

| ^

17-5

17 Troubleshooting in Polyspace Bug Finder

1 error detected in the compilation of "missing_include.c".

C:\missing_include.c: warning: Failed compilation.

Global compilation phase...

17-6

 Contact Technical Support

Contact Technical Support

To contact MathWorks Technical Support, use this page. You will need a MathWorks
Account login and password. For faster turnaround with an issue in Polyspace, besides
the required system information, provide appropriate code that reproduces the issue or
the verification log file.

Provide System Information

When you enter a support request, provide the following system information:

• Hardware configuration
• Operating system
• Polyspace and MATLAB license numbers
• Specific version numbers for Polyspace products
• Installed Bug Report patches

To obtain your configuration information, do one of the following:

• In the Polyspace user interface, select Help > About.
• At the command line, run the following command, replacing matlabroot with your

MATLAB installation folder:

• UNIX — matlabroot/polyspace/bin/polyspace-code-prover-nodesktop
-ver

• Windows — matlabroot\polyspace\bin\polyspace-code-prover-
nodesktop -ver

Provide Information About the Issue

If you face compilation issues with your project, see “Troubleshooting in Polyspace
Bug Finder”. If you are still having issues, contact technical support with the following
information:

• The analysis log.

The analysis log is a text file generated in your results folder and titled
Polyspace_version_project_date_time.txt. It contains the error message, the
options used for the analysis and other relevant information.

17-7

http://www.mathworks.com/support/contact_us/?s_tid=sp_ban_cs

17 Troubleshooting in Polyspace Bug Finder

• The source files related to the compilation error, if possible.

If you cannot provide the source files:

• Try to provide a screenshot of the source code section that causes the compilation
issue.

• Try to reproduce the issue with a different code. Provide that code to technical
support.

If you are having trouble understanding a result, see “Polyspace Bug Finder Results”. If
you are still having trouble understanding the result, contact technical support with the
following information:

• The analysis log.

The analysis log is a text file generated in your results folder and titled
Polyspace_version_project_date_time.txt. It contains the options used for
the analysis and other relevant information.

• The source files related to the result if possible.

If you cannot provide the source files:

• Try provide a screenshot of the relevant source code from the Source pane on the
Polyspace user interface.

• Try to reproduce the problem with a different code. Provide that code to technical
support.

17-8

 Polyspace Cannot Find the Server

Polyspace Cannot Find the Server

Message

Error: Cannot instantiate Polyspace cluster

| Check the -scheduler option validity or your default cluster profile

| Could not contact an MJS lookup service using the host computer_name.

 The hostname, computer_name, could not be resolved.

Possible Cause

Polyspace uses information provided in Preferences to locate the server. If this
information is incorrect, the software cannot locate the server.

Solution

Provide correct server information.

1 Select Tools > Preferences.
2 Select the Server Configuration tab. Provide your server information.

For more information, see “Set Up Server for Metrics and Remote Analysis”.

17-9

17 Troubleshooting in Polyspace Bug Finder

Job Manager Cannot Write to Database

Message

Unable to write data to the job manager database

Possible Cause

If the job scheduler cannot send data to the localhost, Polyspace returns this error. The
most likely reasons for the MJS being unable to connect to the client computer are:

• Firewalls do not allow traffic from the MJS to the client.
• The MJS cannot resolve the short hostname of the client computer.

Workaround

Add localhost IP to configuration.

1 Select Tools > Preferences.
2 Select the Server Configuration tab.
3 In the Localhost IP address field, enter the IP address of your local computer.

To retrieve your IP address:

• Windows

a Open Control Panel > Network and Sharing Center.
b Select your active network.
c In the Status window, click Details. Your IP address is listed under IPv4

address.
• Linux — Run the ifconfig command and find the inet addr corresponding to

your network connection.
• Mac — Open System Preferences > Network.

Related Examples
• “Set Up Server for Metrics and Remote Analysis”

17-10

 Job Manager Cannot Write to Database

• “Connection Problems Between the Client and MJS”

17-11

17 Troubleshooting in Polyspace Bug Finder

C/C++ Compilation: Undefined Identifier

Issue

Polyspace verification fails during the compilation phase with a message about undefined
identifiers.

The message indicates that Polyspace cannot find a variable definition. Therefore, it
cannot identify the variable type.

Possible Cause: Missing Files

The source code you provided does not contain the variable definition. For instance, the
variable is defined in an include file that Polyspace cannot find.

If you #include-d the include file in your source code but did not add it to your
Polyspace project, you see a previous warning:

Warning: could not find include file "my_include.h"

Solution

If the variable definition occurs in an include file, add the folder that contains the include
file.

• In the user interface, add the folder to your project.

For more information, see “Update Project” on page 1-15.
• At the command line, use the flag -I with the polyspace-bug-finder-nodesktop

command.

For more information, see -I.

Possible Cause: Unrecognized Keyword

The variable represents a keyword that your compiler recognizes but is not part of the
ANSI C standard. Therefore, Polyspace does not recognize it.

For instance, some compilers interpret __SP as a reference to the stack pointer.

17-12

 C/C++ Compilation: Undefined Identifier

Solution

If the variable represents a keyword that Polyspace does not recognize, replace or remove
the keyword from your source code or preprocessed code.

If you remove or replace the keyword from the preprocessed code, you can avoid the
compilation error while keeping your source code intact. You can do one of the following:

• Replace or remove each individual unknown keyword using an analysis option.
Replace the compiler-specific keyword with an equivalent keyword from the ANSI C
Standard.

For information on the analysis option, see Preprocessor definitions (-D).
• Declare the unknown keywords in a separate header file using #define directives.

Specify that header file using an analysis option.

For information on the analysis option, see Include (-include).

Possible Cause: Declaration Embedded in #ifdef Statements

The variable is declared in a branch of an #ifdef macro_name preprocessor directive.
For instance, the declaration of a variable max_power occurs as follows:

#ifdef _WIN32

 #define max_power 31

#endif

Your compilation toolchain might consider the macro macro_name as implicitly defined
and execute the #ifdef branch. However, the Polyspace compilation might not consider
the macro as defined. Therefore, the #ifdef branch is not executed and the variable
max_power is not declared.

Solution

To work around the compilation error, do one of the following:

• Use Target & Compiler options to directly specify your compiler. For instance, to
emulate a Visual C++ compiler, set the Compiler to visual12.0. See “Target &
Compiler”.

• Define the macro explicitly using the option Preprocessor definitions (-D).

17-13

17 Troubleshooting in Polyspace Bug Finder

Note: If you create a Polyspace by tracing your build commands, most Target &
Compiler options are automatically set.

Possible Cause: Project Created from Non-Debug Build

This can be a possible cause only if the undefined identifier occurs in an assert
statement.

You create a Polyspace project from a build system in non-debug mode. When you run an
analysis on the project, you face a compilation error from an undefined identifier in an
assert statement. You find that the identifier my_identifier is defined in a #ifndef
NDEBUG statement, for instance as follows:

#ifndef NDEBUG

int my_identifier;

#endif

The C standard states that when the NDEBUG macro is defined, all assert statements
must be disabled.

Most IDEs define the NDEBUG macro in their build systems. When you build your source
code in your IDE in non-debug mode, code in a #ifndef NDEBUG statement is removed
during preprocessing. For instance, in the preceding example, my_identifier is not
defined. If my_identifier occurs only in assert statements, it is not used either,
because NDEBUG disables assert statements. You do not have compilation errors from
undefined identifiers and your build system executes successfully.

Polyspace does not disable assert statements even if NDEBUG macro is defined because
the software uses assert statements internally to enhance verification.

When you create a Polyspace project from your build system, if your build system defines
the NDEBUG macro, it is also defined for your Polyspace project. Polyspace removes code
in a #ifndef NDEBUG statement during preprocessing, but does not disable assert
statements. If assert statements in your code rely on the code in a #ifndef NDEBUG
statement, compilation errors can occur.

In the preceding example:

• The definition of my_identifier is removed during preprocessing.
• assert statements are not disabled. When my_identifier is used in an assert

statement, you get an error because of undefined identifier my_identifier.

17-14

 C/C++ Compilation: Undefined Identifier

Solution

To work around this issue, create a Polyspace project from your build system in debug
mode. When you execute your build system in debug mode, NDEBUG is not defined. When
you create a Polyspace project from this build, NDEBUG is not defined for your Polyspace
project.

Depending on your project settings, use the option that enables building in debug mode.
For instance, if your build system is gcc-based, you can define the DEBUG macro and
undefine NDEBUG:

gcc -DDEBUG=1 -UNDEBUG *.c

17-15

17 Troubleshooting in Polyspace Bug Finder

C/C++ Compilation: Unknown Function Prototype

Issue

During the compilation phase, the software displays a warning or error message about
unknown function prototype.

the prototype for function 'myfunc' is unknown

The message indicates that Polyspace cannot find a function prototype. Therefore, it
cannot identify the data types of the function argument and return value, and has to
infer them from the calls to the function.

To determine the data types for such functions, Polyspace follows the C99 Standard (ISO/
IEC 9899:1999, Chapter 6.5.2.2: Function calls).

• The return type is assumed to be int.
• The number and type of arguments are determined by the first call to the function.

For instance, if the function takes one double argument in the first call, for
subsequent calls, the software assumes that it takes one double argument. If you
pass an int argument in a subsequent call, a conversion from int to double takes
place.

During the linking phase, if a mismatch occurs between the number or type of arguments
or the return type in different compilation units, the analysis follows an internal
algorithm to resolve this mismatch and determine a common prototype.

Cause

The source code you provided does not contain the function prototype. For instance, the
function is declared in an include file that Polyspace cannot find.

If you #include-d the include file in your source code but did not add it to your
Polyspace project, you see a previous warning:

Warning: could not find include file "my_include.h"

Solution

Search for the function declaration in your source repository.

17-16

 C/C++ Compilation: Unknown Function Prototype

If you find the function declaration in an include file, add the folder that contains the
include file.

• In the user interface, add the folder to your project.

For more information, see “Update Project” on page 1-15.
• At the command line, use the flag -I with the polyspace-bug-finder-nodesktop

command.

For more information, see -I.

17-17

17 Troubleshooting in Polyspace Bug Finder

C/C++ Compilation: Missing Identifiers with Keil or IAR Compiler

Issue

The issue occurs if you use the compiler, Keil or IAR. For more information, see Compiler
(-compiler).

The analysis stops with the error message, expected an identifier, as if an
identifier is missing. However, in your source code, you can see the identifier.

Cause

If you select Keil or IAR as your compiler, the software removes certain keywords
during preprocessing. If you use these keywords as identifiers such as variable names, a
compilation error occurs.

Solution

Specify that Polyspace must not remove the keywords during preprocessing. Define the
macros __PST_KEIL_NO_KEYWORDS__ or __PST_IAR_NO_KEYWORDS__.

For more information, see Preprocessor definitions (-D).

17-18

 C/C++ Compilation: #error Directive

C/C++ Compilation: #error Directive

Issue

The analysis stops with a message containing a #error directive. For instance, the
following message appears: #error directive: !Unsupported platform;
stopping!.

Cause

You typically use the #error directive in your code to trigger a fatal error in case certain
macros are not defined. Your compiler implicitly defines the macros, therefore the error
is not triggered when you compile your code. However, the default Polyspace compilation
does not consider the macros as defined, therefore, the error occurs.

For instance, in the following example, the #error directive is reached only if the macros
__BORLANDC__, __VISUALC32__ or __GNUC__ are not defined. If you use a GNU C
compiler, for instance, the compiler considers the macro __GNUC__ as defined and the
error does not occur. However, if you use the default Polyspace compilation, it does not
consider the macros as defined.

#if defined(__BORLANDC__) || defined(__VISUALC32__)

#define MYINT int

#elif defined(__GNUC__)

#define MYINT long

#else

#error !Unsupported platform; stopping!

#endif

Solution

For successful compilation, do one of the following:

• Specify a compiler such as visual12.0 or gnu4.9. Specifying a compiler defines
some of the compilation flags for the analysis.

For more information, see Compiler (-compiler).
• If the available compiler options do not match your compiler, explicitly define one of

the compilation flags __BORLANDC__, __VISUALC32__, or __GNUC__.

17-19

17 Troubleshooting in Polyspace Bug Finder

For more information, see Preprocessor definitions (-D).

17-20

 C/C++ Compilation: Object is Too Large

C/C++ Compilation: Object is Too Large

Issue

The analysis stops during compilation with a message indicating that an object is too
large.

Cause

The error happens when the software detects an object such as an array, union,
structure, or class, that is too big for the pointer size of the selected target.

For instance, you get the message, Limitation: struct or union is too large
in the following example. You specify a pointer size of 16 bits. The maximum object size
allocated to a pointer, and therefore the maximum allowed size for an object, can be 216-1
bytes. However, you declare a structure as follows:

• struct S

{

 char tab[65536];

}s;

• struct S

{

 char tab[65534];

 int val;

}s;

Solution

1 Check the pointer size that you specified through your target processor type. For
more information, see Target processor type (-target).

For instance, in the following, the pointer size for a custom target My_target is 16
bits.

17-21

17 Troubleshooting in Polyspace Bug Finder

2 Change your code or specify a different pointer size.

For instance, you can:

17-22

 C/C++ Compilation: Object is Too Large

• Declare an array of smaller size in the structure.

If you are using a predefined target processor type, the pointer size is likely
to be the same as the pointer size on your target architecture. Therefore, your
declaration might cause errors on your target architecture.

• Change the pointer size of the target processor type that you specified, if possible.

Otherwise, specify another target processor type with larger pointer size or define
your own target processor type. For more information on defining your own
processor type, see Generic target options.

Note: Polyspace imposes an internal limit of 128 MB on the size of data
structures. Even if your target processor type specification allows data structures
of larger size, this internal limit constrains the data structure sizes.

17-23

17 Troubleshooting in Polyspace Bug Finder

Linking: Body of Assertion or Memory Allocation Function
Discarded

Issue

Polyspace uses its own implementation of standard library functions for more efficient
analysis. If you redefine a standard library function and provide the function body to
Polyspace, the analysis uses your definition.

However, for certain standard library functions, Polyspace continues to use its own
implementations, even if you redefine the function and provide the function body. The
functions include assert and memory allocation functions such as malloc, calloc and
alloca.

You see a warning message like the following:

Body of routine "malloc" was discarded.

Cause

These functions have special meaning for the Polyspace analysis, so you are not allowed
to redefine them. For instance:

• The Polyspace implementation of the malloc function allows the software to check if
memory allocated using malloc is freed later.

• The Polyspace implementation of assert is used internally to enhance analysis.

Solution

Unless you particularly want your own redefinitions to be used, ignore the warning.
The analysis results are based on Polyspace implementations of the standard library
function, which follow the original function specifications.

If you want your own redefinitions to be used and you are sure that your redefined
function behaves the same as the original function, rename the functions. You can
rename the function only for the purposes of analysis using the option Preprocessor
definitions (-D). For instance, to rename a function malloc to my_malloc, use
malloc=my_malloc for the option argument.

17-24

 Error from Special Characters

Error from Special Characters

Issue

Your file or folder names contain extended ASCII characters, such as accented letters or
Kanji characters. You face file access errors during analysis. Error messages you might
see include:

• No source files to analyze

• Control character not valid

• Cannot create directory Folder_Name

Cause

Polyspace does not fully support these characters. If you use extended ASCII in your file
or folder names, your Polyspace analysis may fail due to file access errors.

Workaround

Change the unsupported ASCII characters to standard US-ASCII characters.

17-25

17 Troubleshooting in Polyspace Bug Finder

C++ Compilation: In-Class Initialization

When a data member of a class is declared static in the class definition, it is a static
member of the class. You must initialize static data members outside the class because
they exist even when no instance of the class has been created.

class Test

{

public:

 static int m_number = 0;

};

Error message:
Error: a member with an in-class initializer must be const

Corrected code:

in file Test.h in file Test.cpp

class Test

{

public:

static int m_number;

};

int Test::m_number = 0;

17-26

 C++ Compilation: Double Declarations of Standard Template Library Functions

C++ Compilation: Double Declarations of Standard Template
Library Functions

Consider the following code.

#include <list>

void f(const std::list<int*>::const_iterator it) {}

void f(const std::list<int*>::iterator it) {}

void g(const std::list<int*>::const_reverse_iterator it) {}

void g(const std::list<int*>::reverse_iterator it) {}

The declared functions belong to list container classes with different iterators.
However, the software generates the following compilation errors:

error: function "f" has already been defined

error: function "g" has already been defined

You would also see the same error if, instead of list, the specified container was
vector, set, map, or deque.

To avoid the double declaration errors, do one of the following:

• Deactivate automatic stubbing of standard template library functions. For more
information, see No STL stubs (-no-stl-stubs).

• Define the following Polyspace preprocessing directives:

• __PST_STL_LIST_CONST_ITERATOR_DIFFER_ITERATOR__

• __PST_STL_VECTOR_CONST_ITERATOR_DIFFER_ITERATOR__

• __PST_STL_SET_CONST_ITERATOR_DIFFER_ITERATOR__

• __PST_STL_MAP_CONST_ITERATOR_DIFFER_ITERATOR__

• __PST_STL_DEQUE_CONST_ITERATOR_DIFFER_ITERATOR__

For example, for the given code, run analysis at the command line with the following
flag. The flag defines the appropriate directive for the list container.

-D __PST_STL_LIST_CONST_ITERATOR_DIFFER_ITERATOR__

For more information on defining preprocessor directives, see Preprocessor definitions
(-D).

17-27

17 Troubleshooting in Polyspace Bug Finder

C++ Compilation: GNU Compiler

If you compile your code using a GNU C++ compiler, specify one of the GNU compilers for
the Polyspace analysis. For more information, see Compiler (-compiler).

If you specify one of the GNU compilers, Polyspace does not produce an error during
the Compile phase because of assembly language keywords such as __asm__
__volatile__. However, Polyspace ignores the content of the assembly-language code
for the analysis.

Polyspace software supports the following GNU elements:

• Variable length arrays
• Anonymous structures:

void f(int n) { char tmp[n] ; /* ... */ }

union A {

 struct {

 double x;

 double y;

 double z;

 };

 double tab[3];

} a;

void main(void) {

 assert(&(a.tab[0]) == &(a.x));

}

• Other syntactic constructions allowed by GCC, except as noted below.
• Statement expressions:

int i = ({ int tmp ; tmp = f() ; if (tmp > 0) { tmp = 0 ; } tmp ; })

Partial Support

Zero-length arrays have the same support as in Visual Mode. They are allowed when
used through a pointer, but not in a local variable.

17-28

 C++ Compilation: GNU Compiler

Syntactic Support Only

Polyspace software provides syntactic support for the following options, but not semantic
support:

• __attribute__(...) is allowed, but generally not taken into account.
• No special stubs are computed for predeclared functions such as __builtin_cos,

__builin_exit, and __builtin_fprintf).

Not Supported

The following options are not supported:

• Taking the address of a label:

{ L : void *a = &&L ; goto *a ; }

• General C99 features supported by default in GCC, such as complex built-in types
(__complex__, __real__, etc.).

• Extended designators initialization:

struct X { double a; int b[10] } x = { .b = { 1, [5] =2 },

.b[3] = 1, .a = 42.0 };

• Nested functions

Examples

Example 1: _asm_volatile_ keyword

In the following example, for the inb_p function to manage the return of the local
variable _v, the __asm__ __volatile__ keyword is used as follows:

extern inline unsigned char

inb_p (unsigned short port)

{

 unsigned char _v;

 __asm__ __volatile__ ("inb %w1,%0\noutb %%al,$0x80":"=a"

 (_v):"Nd" (port));

 return _v;

}

17-29

17 Troubleshooting in Polyspace Bug Finder

...

Although Polyspace does not produce an error during the Compile phase, it ignores the
assembly code. An orange Non-initialized local variable error appears on the return
statement after verification.

Example 2: Anonymous Structure

The following example shows an unnamed structure supported by GNU:

class x

{

public:

 struct {

 unsigned int a;

 unsigned int b;

 unsigned int c;

 };

 unsigned short pcia;

 enum{

 ea = 0x1,

 eb = 0x2,

 ec = 0x3

 };

 struct {

 unsigned int z1;

 unsigned int z2;

 unsigned int z3;

 unsigned int z4;

 };

};

int main(int argc, char *argv[])

{

 class x myx;

 myx.a = 10;

 myx.z1 = 11;

 return(0);

}

17-30

 C++ Compilation: ISO versus Default

C++ Compilation: ISO versus Default
The ISO setting for Compiler (-compiler) strictly follows the ISO/IEC 14882:1998 ANSI
C++ standard. If you specify the setting iso, the Polyspace compiler might produce
permissiveness errors. The following code contains five common permissiveness errors
that occur if you specify the option. These errors are explained in detail following the
code.

By default, the Polyspace compiler uses compilation standards that many C++ compilers
use. The default compilation is more permissive with regard to the C++ standard.

Original code (file permissive.cpp):

class B {} ;

class A

{

 friend B ;

 enum e ;

 void f() {

 long float ff = 0.0 ;

 }

 enum e { OK = 0, KO } ;

};

template <class T>

struct traits

{

 typedef T * pointer ;

 typedef T * pointer ;

} ;

template<class T>

struct C

{

 typedef traits<T>::pointer pointer ;

} ;

void main()

{

 C<int> c;

}

If you use iso for Compiler (-compiler), the following errors occur.

Error message Original code Corrected code

error: omission of friend B; friend class B;

17-31

17 Troubleshooting in Polyspace Bug Finder

Error message Original code Corrected code
 "class"

 is nonstandard

forward declaration of

enum type

is nonstandard

enum e; The line must be removed.

invalid combination of

 type specifiers

long float ff = 0.0; double ff = 0.0

class member typedef

 may not be redeclared
Second instance of

typedef T * pointer;

The line must be removed.

nontype

"traits<T>::pointer

[with T=T]"

 is not a type name

typedef \

traits<T>::pointer pointer;

typedef

typename

traits<T>::pointer

 pointer

The error messages disappear if you specify none instead of iso.

17-32

 C++ Compilation: Visual Compilers

C++ Compilation: Visual Compilers

The following messages appear if the compiler is based on a Visual compiler. For more
information, see Compiler (-compiler).

Import Folder

When a Visual application uses #import directives, the Visual C++ compiler generates
a header file with extension .tlh that contains some definitions. To avoid compilation
errors during Polyspace analysis, you must specify the folder containing those files.

Original code:

#include "stdafx.h"

#include <comdef.h>

#import <MsXml.tlb>

MSXML::_xml_error e ;

MSXML::DOMDocument* doc ;

int _tmain(int argc, _TCHAR* argv[])

{

 return 0;

}

Error message:

"../sources/ImportDir.cpp", line 7: catastrophic error: could not

open source file "./MsXml.tlh"

 #import <MsXml.tlb>

The Visual C++ compiler generates these files in its “build-in” folder (usually Debug or
Release). In order to provide those files:

• Build your Visual C++ application.
• Specify your build folder for the Polyspace analysis.

pragma Pack

Using a different value with the compile flag (#pragma pack) can lead to a linking error
message.

Original code:

17-33

17 Troubleshooting in Polyspace Bug Finder

test1.cpp type.h test2.cpp

#pragma pack(4)

#include "type.h"

struct A

{

 char c ;

 int i ;

} ;

#pragma pack(2)

#include "type.h"

Error message:
Pre-linking C++ sources ...

"../sources/type.h", line 2: error: declaration of class "A" had

a different meaning during compilation of "test1.cpp"

(class types do not match)

 struct A

 ^

 detected during compilation of secondary translation unit

"test2.cpp"

To continue the analysis, use the option Ignore pragma pack directives (-ignore-pragma-
pack).

17-34

 Eclipse Java Version Incompatible with Polyspace Plug-in

Eclipse Java Version Incompatible with Polyspace Plug-in

In this section...

“Issue” on page 17-35
“Cause” on page 17-35
“Solution” on page 17-35

Issue

After installing the Polyspace plug-in for Eclipse, when you open the Eclipse or Eclipse-
based IDE, you see this error message:

Java 7 required, but the current java version is 1.6.

You must install Java 7 before using Polyspace plug in.

You see this message even if you install Java 7 or higher.

Cause

Despite installing Java 7 or higher, the Eclipse or Eclipse-based IDE still uses an older
version.

Solution

Make sure that the Eclipse or Eclipse-based IDE uses the compatible Java version.

1 Open the executable_name.ini file that occurs in the root of your Eclipse
installation folder.

If you are running Eclipse, the file is eclipse.ini.
2 In the file, just before the line -vmargs, enter:

-vm

java_install\bin\javaw.exe

Here, java_install is the Java installation folder.

For instance, your product installation comes with the required Java version for
certain platforms. You can force the Eclipse or Eclipse-based IDE to use this version.
In your .ini file, enter the following just before the line -vmargs:

17-35

17 Troubleshooting in Polyspace Bug Finder

-vm

matlabroot\sys\java\jre\arch\jre\bin\javaw.exe

Here, matlabroot is your product installation folder, for instance, C:\MATLAB
\R2015b\ and arch is win32 or win64 depending on the product platform.

17-36

 Insufficient Memory During Report Generation

Insufficient Memory During Report Generation

Message
....

Exporting views...

Initializing...

Polyspace Report Generator

Generating Report

 Converting report

Opening log file: C:\Users\auser\AppData\Local\Temp\java.log.7512

Document conversion failed

.....

Java exception occurred:

java.lang.OutOfMemoryError: Java heap space

Possible Cause

During generation of very large reports, the software can sometimes indicate that there
is insufficient memory.

Solution

If this error occurs, try increasing the Java heap size. The default heap size in a 64-bit
architecture is 1024 MB.

To increase the size:

1 Navigate to matlabroot\polyspace\bin\architecture. Where:

• matlab is the installation folder.
• architecture is your computer architecture, for instance, win32, win64, etc.

2 Change the default heap size that is specified in the file, java.opts. For example,
to increase the heap size to 2 GB, replace 1024m with 2048m.

3 If you do not have write permission for the file, copy the file to another location. After
you have made your changes, copy the file back to matlabroot\polyspace\bin
\architecture\.

17-37

17 Troubleshooting in Polyspace Bug Finder

Error from Disk Defragmentation and Antivirus Software

Issue

The analysis stops with an error message like the following:
Some stats on aliases use:

 Number of alias writes: 22968

 Number of must-alias writes: 3090

 Number of alias reads: 0

 Number of invisibles: 949

Stats about alias writes:

 biggest sets of alias writes: foo1:a (733), foo2:x (728), foo1:b (728)

 procedures that write the biggest sets of aliases: foo1 (2679), foo2 (2266),

 foo3 (1288)

**** C to intermediate language translation - 17 (P_PT) took 44real, 44u + 0s (1.4gc)

exception SysErr(OS.SysErr(name="Directory not empty", syserror=notempty)) raised.

unhandled exception: SysErr: No such file or directory [noent]

--

--- ---

--- Verifier has encountered an internal error. ---

--- Please contact your technical support. ---

--- ---

Possible Cause

A disk defragmentation tool or antivirus software is running on your machine.

Solution

Try:

• Stopping the disk defragmentation tool.
• Deactivating the antivirus software. Or, configuring exception rules for the antivirus

software to allow Polyspace to run without a failure.

Note: Even if the analysis does not fail, the antivirus software can reduce the speed of
your analysis. This reduction occurs because the software checks the temporary analysis
files. Configure the antivirus software to exclude your temporary folder, for example, C:
\Temp, from the checking process.

17-38

 Troubleshooting Project Creation from Visual Studio Build

Troubleshooting Project Creation from Visual Studio Build

In this section...

“Cannot Create Project from Visual Studio Build” on page 17-39
“Compilation Error After Creating Project from Visual Studio Build” on page 17-39

Cannot Create Project from Visual Studio Build

If you are trying to import a Visual Studio 2010 or Visual Studio 2012 project and
polyspace-configure does not work properly, do the following:

1 Stop the MSBuild.exe process.
2 Set the environment variable MSBUILDDISABLENODEREUSE to 1.
3 Specify MSBuild.exe with the/nodereuse:false option.
4 Restart the Polyspace configuration tool:

polyspace-configure.exe -lang cpp <MSVS path>/msbuild sample.sln

Compilation Error After Creating Project from Visual Studio Build

Issue

After you automatically set up your project from a Visual Studio 2010 build, you face
compilation errors.

Possible Cause

By default, Polyspace assigns the latest version of the compiler, visual12.0 to your
project. This assignment can cause compilation errors. For more information on the
option to specify compilers, see Compiler (-compiler).

Solution

To avoid the errors, do one of the following:

• After automatic project setup:

1 Open the project in the user interface. On the Configuration pane, select
Target & Compiler.

17-39

17 Troubleshooting in Polyspace Bug Finder

2 Check the setting for Compiler. If it is set to visual12.0, change it to
visual10.

Note: If you are creating an options file from your Visual Studio 2010 build, check the
-compiler argument. If it is set to visual12.0, change it to visual10.

• Before automatic project setup:

1 Open the file cl.xml in matlabroot\polyspace\configure
\compiler_configuration\ where matlabroot is your MATLAB installation
folder such as C:\Program Files\R2015a.

2 Change the line

<dialect>visual12.0</dialect>

to

<dialect>visual10</dialect>

3 Create your project or options file. The compiler is already assigned to visual10.

17-40

 Compiler Not Supported for Project Creation from Build Systems

Compiler Not Supported for Project Creation from Build Systems

Issue

Your compiler is not supported for automatic project creation from build commands.

For more information on automatic project creation, see:

• “Create Project Automatically” on page 1-6
• “Create Project Automatically at Command Line” on page 6-2
• “Create Project Automatically from MATLAB Command Line” on page 6-12

Cause

For automatic project creation from your build system, your compiler configuration
must be available to Polyspace. Polyspace provides a compiler configuration file only for
certain compilers.

For information on which compilers are supported, see “Requirements for Project
Creation from Build Systems” on page 1-9.

Solution

To enable automatic project creation for an unsupported compiler, you can write your
own compiler configuration file.

1 Copy one of the existing configuration files from matlabroot\polyspace
\configure\compiler_configuration\.

2 Save the file as my_compiler.xml. my_compiler can be a name that helps you
identify the file.

To edit the file, save it outside the installation folder. After you have finished
editing, you must copy the file back to matlabroot\polyspace\configure
\compiler_configuration\.

3 Edit the contents of the file to represent your compiler. Replace the entries between
the XML elements with appropriate content.

The following table lists the XML elements in the file with a description of what the
content within the element represents.

17-41

17 Troubleshooting in Polyspace Bug Finder

XML Element Content Description Content Example
for GNU C
Compiler

<compiler_names><name> ...

</name><compiler_names>

Name of the compiler
executable. This executable
transforms your .c files
into object files. You can add
several binary names, each in a
separate <name>...</name>
element. The software checks
for each of the provided names
and uses the compiler name for
which it finds a match.

You must not specify the linker
binary inside the <name>...</
name> elements.

If the name that you specify
is present in an existing
compiler configuration file,
an error occurs. To avoid
the error, use the additional
option -compiler-config
my_compiler.xml when
tracing the build so that the
software explicitly uses your
compiler configuration file.

• gcc

• gpp

<include_options><opt> ...

</opt></include_options>

The option that you use with
your compiler to specify include
folders.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-I

17-42

 Compiler Not Supported for Project Creation from Build Systems

XML Element Content Description Content Example
for GNU C
Compiler

<system_include_options>

<opt> ... </opt>

</system_include_options>

The option that you use with
your compiler to specify system
headers.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-isystem

<preinclude_options><opt> ...

</opt></preinclude_options>

The option that you use with
your compiler to force inclusion
of a file in the compiled object.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-include

<define_options><opt> ...

</opt></define_options>

The option that you use with
your compiler to predefine a
macro.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-D

17-43

17 Troubleshooting in Polyspace Bug Finder

XML Element Content Description Content Example
for GNU C
Compiler

<undefine_options><opt> ...

</opt></undefine_options>

The option that you use with
your compiler to undo any
previous definition of a macro.

To specify options where the
argument immediately follows
the option, use an isPrefix
attribute for opt and set it to
true.

-U

17-44

 Compiler Not Supported for Project Creation from Build Systems

XML Element Content Description Content Example
for GNU C
Compiler

<semantic_options><opt> ...

</opt></semantic_options>

The options that you use to
modify the compiler behavior.
These options specify the
language settings to which the
code must conform.

You can use the isPrefix
attribute to specify multiple
options that have the same
prefix and the numArgs
attribute to specify options
with multiple arguments. For
instance:

• Instead of

<opt>-m32</opt>

<opt>-m64</opt>

You can write <opt
isPrefix="true">-m</

opt>.
• Instead of

<opt>-std=c90</opt>

<opt>-std=c99</opt>

You can write <opt
numArgs="1">-std</

opt>. If your makefile uses
-std c90 instead of -
std=c90, this notation also
supports that usage.

• -ansi

• -std =C90

• -std =c+

+11

• -fun

signed -

char

17-45

17 Troubleshooting in Polyspace Bug Finder

XML Element Content Description Content Example
for GNU C
Compiler

<dialect> ... </dialect> The Polyspace dialect that
corresponds to or closely
matches your compiler dialect.
The content of this element
directly translates to the option
Dialect in your Polyspace
project or options file.

For the complete list of dialects,
on the Configuration pane,
select Target & Compiler.

gnu4.7

<preprocess_options_list>

<opt> ... </opt>

</preprocess_options_list>

The options that specify how
your compiler generates a
preprocessed file.

You can use the macro
$(OUTPUT_FILE) if your
compiler does not allow sending
the preprocessed file to the
standard output. Instead it
defines the preprocessed file
internally.

-E

For an
example of the
$(OUTPUT_FILE)

macro, see
the existing
compiler
configuration
file
cl2000.xml.

17-46

 Compiler Not Supported for Project Creation from Build Systems

XML Element Content Description Content Example
for GNU C
Compiler

<preprocessed_output_file> ... </

preprocessed_output_file>

The name of file where the
preprocessed output is stored.

You can use the following
macros when the name of the
preprocessed output file is
adapted from the source file:

• $(SOURCE_FILE): Source
file name

• $(SOURCE_FILE_EXT):
Source file extension

• $(SOURCE_FILE_NO_EXT):
Source file name without
extension

For instance, use
$(SOURCE_FILE_NO_EXT).pre

when the preprocessor file
name has the same name
as the source file, but with
extension .pre.

For an example
of this element,
see the existing
compiler
configuration
file xc8.xml.

<src_extensions><ext> ...

</ext></src_extensions>

The file extensions for source
files.

• c

• cpp

• c++

<obj_extensions><ext> ...

</ext></obj_extensions>

The file extensions for object
files.

<precompiled_header_extensions> ...

</precompiled_header_extensions>

The file extensions for
precompiled headers (if
available).

17-47

17 Troubleshooting in Polyspace Bug Finder

XML Element Content Description Content Example
for GNU C
Compiler

<polyspace_c_extra_options_list>

<opt> ... </opt>

</polyspace_c_extra_options_list>

Additional options that will
be added to your project
configuration

To avoid
compilation
errors due
to non-ANSI
extension
keywords, enter
-D keyword.
For more
information, see
Preprocessor
definitions (-D).

<polyspace_cpp_extra_options_list>

<opt> ... </opt>

</polyspace_cpp_extra_options_list>

Additional options that will
be added to your C++ project
configuration

To avoid
compilation
errors due
to non-ANSI
extension
keywords, enter
-D keyword.
For more
information, see
Preprocessor
definitions (-D).

4 After saving the edited XML file to matlabroot\polyspace\configure
\compiler_configuration\, create a project automatically using your build
command.

Tip To quickly see if your compiler configuration file works, run the automatic
project setup on a sample build that does not take much time to complete. After you
have set up a project with your compiler configuration file, you can use this file for
larger builds.

17-48

 Slow Build Process When Polyspace Traces the Build

Slow Build Process When Polyspace Traces the Build

Issue

In some cases, your build process can run slower when Polyspace traces the build.

Cause

Polyspace caches information in files stored in the system temporary folder, such as C:
\Users\User_Name\AppData\Local\Temp, in Windows. Your build can take a long
time to perform read/write operations to this folder. Therefore, the overall build process
is slow.

Solution

You can work around the slow build process by changing the location where Polyspace
stores cache information. For instance, you can use a cache path local to the drive from
which you run build tracing. To create and use a local folder ps_cache for storing cache
information, use the advanced option -cache-path ./ps_cache.

• If you trace your build from the Polyspace user interface, enter this flag in the field
Add advanced configure options. For more information, see “Create Project
Automatically” on page 1-6.

• If you trace your build from the DOS, UNIX or MATLAB command line, use this flag
with the polyspace-configure command or polyspaceConfigure function.

17-49

17 Troubleshooting in Polyspace Bug Finder

Check if Polyspace Supports Windows Build Command

Issue

Your build command executes to completion in a Windows console application other than
cmd.exe. However, when Polyspace traces the build, the command fails.

For instance, your build command executes to completion from the Cygwin shell.
However, when Polyspace traces the build, the build command throws an error.

For more information on automatic project creation, see:

• “Create Project Automatically” on page 1-6
• “Create Project Automatically at Command Line” on page 6-2
• “Create Project Automatically from MATLAB Command Line” on page 6-12

Possible Cause

When you launch a Windows console application, your environment variables are
appropriately set. Alternate Windows console applications such as the Cygwin shell can
set your environment differently from cmd.exe.

Polyspace attempts to trace your build with the assumption that your commands run to
completion in cmd.exe. Therefore, even if your build command runs to completion in the
alternate console application, when Polyspace traces the build, the command fails.

Solution

Make sure that your build command executes to completion in the cmd.exe interface.
For instance, before you trace a build command that executes to completion in the
Cygwin shell, do one of the following:

• Launch the Cygwin shell from cmd.exe and then run your build command. For
instance, enter the following command at the DOS command line:

cmd.exe /C "C:\cygwin64\bin\bash.exe" -c make

• Find the full path to your build executable and then run this executable from
cmd.exe.

17-50

 Check if Polyspace Supports Windows Build Command

1 Open the Cygwin shell. Enter the following:

which make

The output of this command shows the full path to your executable.
2 Using the above output, run the executable from cmd.exe. For instance, enter

the following command at the DOS command line:

cmd.exe /C path_to_executable

path_to_executable is the full path to the executable that you found in the
previous step. For instance, C:\cygwin64\bin\make.exe.

If the steps do not execute to completion, Polyspace cannot trace your build.

If the steps complete successfully, trace the build command after launching it from
cmd.exe. For instance, on the command-line, you can do the following to create a
Polyspace options file.

1 Enter your build commands in a .bat file.

rem @echo off

cmd.exe /C "C:\cygwin64\bin\bash.exe" -c make

Name the file, for instance, launching.bat.
2 Trace the build commands in the .bat file.

"C:\Program Files\MATLAB\R2016b\polyspace\bin\polyspace-configure.exe"

 -output-options-file myOptions.txt launching.bat

You can now run polyspace-bug-finder-nodesktop on the options file.

17-51

18

Software Quality with Polyspace
Metrics

• “Upload Results to Polyspace Metrics” on page 18-2
• “View Projects in Polyspace Metrics” on page 18-4
• “Compare Metrics Against Software Quality Objectives” on page 18-12
• “Web Browser Requirements for Polyspace Metrics” on page 18-22
• “View Results List in Polyspace Metrics” on page 18-23

18 Software Quality with Polyspace Metrics

Upload Results to Polyspace Metrics

After analysis, you can upload results to the Polyspace Metrics web interface. The web
interface displays a summary of your analysis results. You can share this summary
with others even if they do not have Polyspace installed locally. You can also compare
the results against previous analyses on the same project or measure them against
predefined software quality objectives.

For more information, see “Polyspace Metrics Interface” on page 18-7.

Before you generate code quality metrics, set up Polyspace Metrics. See “Set Up
Polyspace Metrics”.

In this section...

“Manually Upload Results” on page 18-2
“Automatically Upload Results (Batch Analysis Only)” on page 18-3

Manually Upload Results

To upload your results to the Polyspace Metrics web interface,

1 Select your results in the Project Browser pane.
2 Select Metrics > Upload to Metrics.
3 When you upload results to Polyspace Metrics, you are prompted to enter a

password. Leave the field blank if you do not want to specify one.

If you specify a password, you must enter it every time you open your project in
Polyspace Metrics. The session lasts for 30 minutes even if you close and reopen your
web browser. After 30 minutes, enter your password again.

You can also specify a password later. On the Polyspace Metrics web interface, right-
click your project and select Change/Set Password.

Note: The password for a Polyspace Metrics project is encrypted. The web data
transfer is not encrypted. The password feature minimizes unintentional data
corruption, but it does not provide data security. However, data transfers between a
Polyspace local host and the remote analysis MJS host are always encrypted. To use
a secure web data transfer with HTTPS, see “Configure Web Server for HTTPS”.

18-2

 Upload Results to Polyspace Metrics

Automatically Upload Results (Batch Analysis Only)

If you perform a remote analysis, you can specify for the results to be uploaded
automatically to the web interface after analysis. Otherwise, upload the results after
analysis manually.

1 On the Configuration pane, select Distributed Computing.
2 Along with Batch, select Add to results repository.

After analysis, the results are automatically uploaded to the web interface.
3 When you upload results to Polyspace Metrics, you are prompted to enter a

password. Leave the field blank if you do not want to specify one.

If you specify a password, you must enter it every time you open your project in
Polyspace Metrics. The session lasts for 30 minutes even if you close and reopen your
web browser. After 30 minutes, enter your password again.

You can also specify a password later. On the Polyspace Metrics web interface, right-
click your project and select Change/Set Password.

Note: The password for a Polyspace Metrics project is encrypted. The web data
transfer is not encrypted. The password feature minimizes unintentional data
corruption, but it does not provide data security. However, data transfers between a
Polyspace local host and the remote analysis MJS host are always encrypted. To use
a secure web data transfer with HTTPS, see “Configure Web Server for HTTPS”.

Related Examples
• “View Projects in Polyspace Metrics” on page 18-4
• “Compare Metrics Against Software Quality Objectives” on page 18-12

18-3

18 Software Quality with Polyspace Metrics

View Projects in Polyspace Metrics

Polyspace Metrics is a web dashboard that displays code quality metrics from your
analysis results. Using this dashboard, you can:

• Track improvements or regression in code quality over time.
• Provide managers a high-level overview of your code quality.
• Compare your code against quality objectives.
• Narrow your analysis review to critical results.

Upload Results

Before you can review your project in Polyspace Metrics, you must “Upload Results to
Polyspace Metrics” on page 18-2.

Open Metrics Interface

You can open the metrics interface in one of the following ways:

• If you have Polyspace installed, select Metrics > Open Metrics.
• If you do not have Polyspace installed, open a web browser and enter the following

URL:

protocol:// ServerName: PortNumber

• protocol is either http (default) or https.

To use HTTPS, additional configuration is required. See “Configure Web Server for
HTTPS”.

• ServerName is the name or IP address of your Polyspace Metrics server.
• PortNumber is the web server port number (default 8080).

When the Polyspace Metrics web interface opens you are presented with a list of results
in your repository. You can view these results by project or by run.

The Projects tab lists the uploaded results by projects. On this tab, you can:

• See the number of project runs and overall statistics about the project by hovering
your cursor over the project name.

18-4

 View Projects in Polyspace Metrics

• See project-level metrics by right-clicking the column headers and adding additional
columns: Bug Finder Checks, Coding Rules, Code Metrics, Run-Time Errors, or
Review Progress.

• Create project groups by right-clicking a project and selecting Create Project
Category. Drag projects to your new category.

• Filter projects using the column headers.
• Delete projects from the Metrics repository by right-clicking the project and selecting

Delete Project from Repository.
• Assign or change the password for a project by right-clicking the project and selecting

Change/Set Password.
• Review into code quality metrics for a project by clicking the project. For details, see

“Polyspace Metrics Interface” on page 18-7.

The Runs tab lists the individual runs for allprojects. On this tab, you can:

• Delete a run from the repository by right-clicking the run and selecting Delete Run
from Repository.

• Assign password to run by right-clicking the run and selecting Change/Set
Password.

• See runs between two specific dates by selecting the starting date in the From field
and the end date in the To field.

• See only the last n runs by changing the value of the Maximum number of runs
field.

• See code quality metrics for a run by right-clicking the run and selecting Go to
Metrics Page.

• Download results of run to Polyspace user interface by clicking the run name.

Review Metrics

For each project or analysis, you can view the code quality metrics spread over four tabs,
at project, file, and function level. Select a project and you see four tabs:

• The Summary tab provides a high-level overview of the verification results.
• The Code Metrics tab provides the details of the code complexity metrics in your

results.
• The Coding Rules tab provides the details of the coding rule violations in your

results.

18-5

18 Software Quality with Polyspace Metrics

• The Bug Finder tab provides details of code defects in your results.

If you want to “Compare Metrics Against Software Quality Objectives” on page 18-12,
before reviewing your results, you can turn on quality objectives.

1 Click an entry on the Summary tab. Clicking on an entry brings you to the
respective tab for more details.

2 On the Code Metrics, Coding Rules or Run-Time Errors tabs, select an entry to
download the result to the Polyspace user interface.

The results appear on the Results List pane in the Polyspace user interface. The
filter Show > Web checks on this pane indicate that you have downloaded the
results from Polyspace Metrics.

3 In the Polyspace user interface, review the particular result, investigate the root
cause in your source code, and assign review comments and justifications.

4 To upload your comments and justifications to the Polyspace Metrics repository,
select Metrics > Upload to Metrics.

Tip To upload automatically your comments and justifications to the Polyspace
Metrics repository when you save them:

a Select Tools > Preferences.

b On the Server Configuration tab, select Save justifications in the
Polyspace Metrics repository.

5 In the Polyspace Metrics interface, click to view your newly uploaded metrics.

Compare Metrics Between Results

Using the Polyspace Metrics interface, you can track improvements or regression in code
quality metrics over various runs on the same source code.

To view trends in metrics, upload the various versions of your results to the Polyspace
Metrics repository.

1 Open the Polyspace Metrics interface.

For more information, see “Open Metrics Interface” on page 18-4.
2 On the Projects tab, select the project for which you want to view trends.

18-6

 View Projects in Polyspace Metrics

The code quality metrics for all versions of the project appear on the Summary,
Code Metrics, Coding Rules, and Bug-Finder tabs.

3 To compare two versions of the same project:

a In the From and To lists on the upper left of the web dashboard, select the two
versions that you want to compare.

b Select the Compare box.

On each tab, new columns appear and existing columns display improvement or
regression in a metric. For example, in the figure below, you see a new All Metrics
Trend column that appears on the Summary tab. This column describes how the
metrics in the Bug-Finder group compare over two versions of a project.

• A means that the metrics is better.
• A means that the metric is worse.
• A mixed in the All Metrics Trend column means some metrics improved and

some did not improve.
4 To see only the new findings in a version compared to a previous version:

a In the From and To lists on the upper left of the web dashboard, select the two
versions that you want to compare.

b Select the New Findings Only box.

The existing columns display only the new findings. In addition, you also see two
new columns:

• The Newly Confirmed column shows those new findings to which you assign a
Severity of High, Medium, or Low in the Polyspace user interface.

• The Newly Fixed column shows those findings to which you had assigned a
Severity of High, Medium, or Low in the previous run. However, the assignment
does not exist in the current run, either because a red or orange check turned
green, or because you changed the Severity to Not a defect.

Polyspace Metrics Interface

• “Summary Tab” on page 18-8
• “Code Metrics Tab” on page 18-9

18-7

18 Software Quality with Polyspace Metrics

• “Coding Rules Tab” on page 18-9
• “Bug-Finder Tab” on page 18-10

If you turn on Software Quality Objectives, each tab also specifies how your project or
run compares against those objectives. See “Compare Metrics Against Software Quality
Objectives” on page 18-12.

Summary Tab

The Summary tab summarizes the analysis results for a project or run.

Column Name Description

Verification Version number of the results and the source files.

Verification Status Analysis level completed.
Files Number of files in project.Code Metrics
Lines of code Number of lines of code, broken down by file.
Confirmed
Defects

Number of coding rule violations assigned a Severity of
High, Medium, or Low in the Polyspace user interface.

Coding Rules

Violations Total number of coding rule violations.
Confirmed
Defects

Number of defects assigned a Severity of High, Medium,
or Low in the Polyspace user interface.

Bug-Finder
Checks

Checks Total number of defects.
Overall Status A status of PASS or FAIL based on whether your code

satisfies the software quality objectives you specified.
Level The software quality objectives that you specify. You can

either use a predefined set of objectives or specify your
own objectives.

Review Progress Number or percent of justified results.

To justify a result, you must assign a Status in the
Polyspace user interface.

Software
Quality
Objectives

Justified Code
Metrics

Number or percent of code metric threshold violations that
you have justified.

To justify a result, you must assign a Status in the
Polyspace user interface.

18-8

 View Projects in Polyspace Metrics

Column Name Description

Verification Version number of the results and the source files.

Justified Coding
Rules

Number or percent of coding rule violations that you have
justified.

To justify a result, you must assign a Status in the
Polyspace user interface.

Justified Bug-
Finder Checks

Number or percent of defects that you have justified.

To justify a result, you must assign a Status in the
Polyspace user interface.

Code Metrics Tab

The Code Metrics tab lists the code complexity metrics for your project or run.

Some metrics are calculated at the project level, while others are calculated at file or
function level. For metrics calculated at the function level, the entry displayed for a file is
either an aggregate or a maximum over the functions in the file.

For more information, see “Code Metrics”.

Coding Rules Tab

The Coding Rules tab lists the coding rule violations in your project or run. For more
information on the coding rules, see “Coding Rules”.

You can group the information in the columns by Files or Coding Rules.

Column Name Description

Confirmed
Defects

Number of coding rule violations assigned a Severity of
High, Medium, or Low in the Polyspace user interface.

Justified Number of coding rule violations that you have justified.

To justify a result, you must assign a Status in the
Polyspace user interface.

Coding Rules

Violations Total number of coding rule violations.
Software
Quality
Objectives

Quality Status A status of PASS or FAIL based on whether your code
satisfies the software quality objectives you specified.

18-9

18 Software Quality with Polyspace Metrics

Column Name Description

Level The software quality objectives that you specify. You can
either use a predefined set of objectives, or specify your
own objectives.

Review Progress Number or percent of justified coding rule violations.

To justify a result, you must assign a Status in the
Polyspace user interface.

Bug-Finder Tab

The Bug-Finder tab lists the “Defects” in your project or run.

You can group the information in the columns by Files or Bug-Finder Checkers.

Column Name Description

Confirmed Defects Number or percent of defects assigned a Severity of High,
Medium, or Low in the Polyspace user interface.

See “Review and Fix Results” on page 5-30.
Justified Number or percent of justified defects.

To justify a result, you must assign a Status in the
Polyspace user interface.

Checks Total number of checks.
High Total number of “High Impact Defects” on page 5-8.
Medium Total number of “Medium Impact Defects” on page 5-11.

Bug-Finder
Checks

Low Total number of “Low Impact Defects” on page 5-13.
Quality Status A status of PASS or FAIL based on whether your code

satisfies the software quality objectives you specified.
Level The software quality objectives that you specify. You can

either use a predefined set of objectives or specify your
own objectives.

Software
Quality
Objectives

Review Progress Number or percent of justified defects.

To justify a result, you must assign a Status in the
Polyspace user interface.

18-10

 View Projects in Polyspace Metrics

Related Examples
• “Assign and Save Comments” on page 5-30
• “Upload Results to Polyspace Metrics” on page 18-2
• “Compare Metrics Against Software Quality Objectives” on page 18-12
• “Compare Metrics Between Results” on page 18-6

18-11

18 Software Quality with Polyspace Metrics

Compare Metrics Against Software Quality Objectives

After generating and viewing metrics from your analysis results, you can review the
results in greater detail.

To focus your review, you can:

1 Define quality objectives that you or developers in your organization must meet.
2 Apply the quality objectives to your analysis results.
3 Review only those results that fail to meet those objectives.

Apply Predefined Objectives to Metrics

By default, the software quality objectives are turned off. To apply quality objectives:

1 In the Polyspace Metrics interface, open the metrics page for a project.
2 From the Quality Objectives list in the upper left, select ON.

A new group of Software Quality Objectives columns appears.

• The Overall Status column shows the last used quality objective level to
generate a status of PASS or FAIL for your results.

• The Level column shows the quality objective level.

To change your quality objective level, in this column, select a cell. From the
drop-down list, select a quality level. For more information, see “Bug Finder
Quality Objective Levels” on page 18-13.

3 For files with an Overall Status of FAIL, to see what causes the failure, view the
entries in the other Software Quality Objectives columns. The failing levels are
marked red.

If the icon appears next to the status, it means that Polyspace does not have
enough information to compute the status. For instance, if you specify BF-QO-1,
certain coding rules must be review. But, if you do not check coding rules during the
analysis, Polyspace cannot determine whether your project satisfies the coding rule
objectives specified in BF-QO-1.

4 To investigate the failing quality objectives, select the entries marked red for more
details.

18-12

 Compare Metrics Against Software Quality Objectives

5 On the Code Metrics, Coding Rules, or Bug-Finder tab,

a Select the red column entries to download the results.
b Review the violations and fix or justify the results.
c Upload your new justifications to the Polyspace Metrics web dashboard.

6 After your review, in the Polyspace Metrics interface, click to view the updated
metrics.

If you change your code, to update the metrics, rerun your analysis and upload
the results to the Polyspace Metrics repository. If you have justifications in your
previous results, import them to the new results before uploading to the repository.

Bug Finder Quality Objective Levels

The Bug Finder Quality Objectives or BF-QOs are a set of thresholds against which you
can compare your Bug Finder analysis results. These objectives are adapted from the
Polyspace Code Prover “Software Quality Objectives”. You can develop a review process
based on the Quality Objectives.

You can use a predefined BF-QO level or define your own. Following are the predefined
quality thresholds specified by each BF-QO.

BF-QO Level 1

Metric Threshold Value

Comment density of a file 20
Number of paths through a function 80
Number of goto statements 0
Cyclomatic complexity 10
Number of calling functions 5
Number of calls 7
Number of parameters per function 5
Number of instructions per function 50
Number of call levels in a function 4
Number of return statements in a function 1

18-13

18 Software Quality with Polyspace Metrics

Metric Threshold Value

Language scope, an indicator of the cost of maintaining or
changing functions. Calculated as follows:
(N1+N2) / (n1+n2)

• n1 — Number of different operators
• N1 — Total number of operators
• n2 — Number of different operands
• N2 — Total number of operands

4

Number of recursions 0
Number of direct recursions 0
Number of unjustified violations of the following MISRA C:2004
rules:

• 5.2
• 8.11, 8.12
• 11.2, 11.3
• 12.12
• 13.3, 13.4, 13.5
• 14.4, 14.7
• 16.1, 16.2, 16.7
• 17.3, 17.4, 17.5, 17.6
• 18.4
• 20.4

0

18-14

 Compare Metrics Against Software Quality Objectives

Metric Threshold Value

Number of unjustified violations of the following MISRA C:2012
rules:

• 8.8, 8.11, and 8.13
• 11.1, 11.2, 11.4, 11.5, 11.6, and 11.7
• 14.1 and 14.2
• 15.1, 15.2, 15.3, and 15.5
• 17.1 and 17.2
• 18.3, 18.4, 18.5, and 18.6
• 19.2
• 21.3

0

Number of unjustified violations of the following MISRA C++
rules:

• 2-10-2
• 3-1-3, 3-3-2, 3-9-3
• 5-0-15, 5-0-18, 5-0-19, 5-2-8, 5-2-9
• 6-2-2, 6-5-1, 6-5-2, 6-5-3, 6-5-4, 6-6-1, 6-6-2, 6-6-4, 6-6-5
• 7-5-1, 7-5-2, 7-5-4
• 8-4-1
• 9-5-1
• 10-1-2, 10-1-3, 10-3-1, 10-3-2, 10-3-3
• 15-0-3, 15-1-3, 15-3-3, 15-3-5, 15-3-6, 15-3-7, 15-4-1, 15-5-1,

15-5-2
• 18-4-1

0

BF-QO Level 2 and 3

In addition to all the requirements of BF-QO Level 1, these levels includes the
following thresholds:

Metric Threshold Value

Number of “High Impact Defects” on page 5-8 0

18-15

18 Software Quality with Polyspace Metrics

BF-QO Level 4

In addition to all the requirements of BF-QO Level 2 and 3, this level includes the
following thresholds:

Metric Threshold Value

Number of “Medium Impact Defects” on page 5-11 0

BF-QO Level 5

In addition to all the requirements of BF-QO Level 4, this level includes the
following thresholds:

Metric Threshold Value

Number of unjustified violations of the following MISRA C:2004
rules:

• 6.3
• 8.7
• 9.2, 9.3
• 10.3, 10.5
• 11.1, 11.5
• 12.1, 12.2, 12.5, 12.6, 12.9, 12.10
• 13.1, 13.2, 13.6
• 14.8, 14.10
• 15.3
• 16.3, 16.8, 16.9
• 19.4, 19.9, 19.10, 19.11, 19.12
• 20.3

0

Number of unjustified violations of the following MISRA C:2012
rules:

• 11.8
• 12.1 and 12.3
• 13.2 and 13.4

0

18-16

 Compare Metrics Against Software Quality Objectives

Metric Threshold Value

• 14.4
• 15.6 and 15.7
• 16.4 and 16.5
• 17.4
• 20.4, 20.6, 20.7, 20.9, and 20.11
Number of unjustified violations of the following MISRA C++
rules:

• 3-4-1, 3-9-2
• 4-5-1
• 5-0-1, 5-0-2, 5-0-7, 5-0-8, 5-0-9, 5-0-10, 5-0-13, 5-2-1, 5-2-2,

5-2-7, 5-2-11, 5-3-3, 5-2-5, 5-2-6, 5-3-2, 5-18-1
• 6-2-1, 6-3-1, 6-4-2, 6-4-6, 6-5-3
• 8-4-3, 8-4-4, 8-5-2, 8-5-3
• 11-0-1
• 12-1-1, 12-8-2
• 16-0-5, 16-0-6, 16-0-7, 16-2-2, 16-3-1

0

BF-QO Level 6

In addition to all the requirements of BF-QO Level 5, this level includes the
following thresholds:

Metric Threshold Value

Number of “Low Impact Defects” on page 5-13 0

BF-QO Exhaustive

In addition to all the requirements of BF-QO Level 1, this level includes the
following thresholds. The thresholds for coding rule violations apply only if you check for
coding rule violations.

Metric Threshold Value

Number of unjustified MISRA C and MISRA C++ coding rule
violations

0

18-17

18 Software Quality with Polyspace Metrics

Metric Threshold Value

Number of unjustified defects 0

Customize Software Quality Objectives

Instead of using a predefined objective, you can define your own quality objectives and
apply them to your project.

1 Save the following content in an XML file. Name the file Custom-BF-QO-
Definitions.xml.

<?xml version="1.0" encoding="UTF-8"?>

<MetricsDefinitions>

 <SQO ID="Custom-BF-QO-Level" ApplicableProduct="Bug Finder"

 ApplicableProject="My_Project">

 <comf>20</comf>

 <path>80</path>

 <goto>0</goto>

 <vg>10</vg>

 <calling>5</calling>

 <calls>7</calls>

 <param>5</param>

 <stmt>50</stmt>

 <level>4</level>

 <return>1</return>

 <vocf>4</vocf>

 <ap_cg_cycle>0</ap_cg_cycle>

 <ap_cg_direct_cycle>0</ap_cg_direct_cycle>

 <Num_Unjustified_Violations>Custom_MISRA_Rules_Set

 </Num_Unjustified_Violations>

 <Num_Unjustified_BF_Checks>Custom_BF_Checks_Set

 </Num_Unjustified_BF_Checks>

 </SQO>

 <CodingRulesSet ID="Custom_MISRA_Rules_Set">

 <Rule Name="MISRA_C_5_2">0</Rule>

 <Rule Name="MISRA_C_17_6">0</Rule>

 </CodingRulesSet>

 <BugFinderChecksSet ID="Custom_BF_Checks_Set">

 <Check Name="UNREACHABLE">0</Check>

 <Check Name="USELESS_IF">0</Check>

18-18

 Compare Metrics Against Software Quality Objectives

 </BugFinderChecksSet>

</MetricsDefinitions>

2 Save this XML file in the folder where remote analysis data is stored, for example,
C:\Users\JohnDoe\AppData\Roaming\Polyspace_RLDatas.

If you want to change the folder location, select Metrics > Metrics and Remote
Server Settings.

3 To make the quality level Custom-BF-QO-Level applicable to a certain project,
replace the value of the ApplicableProject attribute with the project name.

If you want the quality objectives to apply to all projects, use
ApplicableProject="".

4 For specifying coding rules, begin the rule name with the appropriate string followed
by the rule number. Use _ instead of a decimal point in the rule number.

Rule String Rule numbers

MISRA C: 2004 MISRA_C_ “MISRA C:2004 and MISRA AC AGC Coding
Rules” on page 2-14

MISRA C: 2012 MISRA_C3_ “MISRA C:2012 Directives and Rules”
MISRA C++ MISRA_Cpp_ “MISRA C++ Coding Rules” on page 2-88
JSF C++ JSF_Cpp_ “JSF C++ Coding Rules” on page 2-117
Custom coding
rules

Custom_ “Custom Coding Rules”

5 For specifying defects, use the defect acronym. For defect acronyms, see the
individual defect reference pages.

6 After you have made your modifications, in the Polyspace Metrics interface, open the
metrics for your project. From the Quality Objectives list in the upper left, select
ON.

7 On the Summary tab, select an entry in the Level column. For the project name
that you specified, your new quality objective Custom-BF-QO-Level appears in the
drop-down list.

8 Select your new quality objective.

The software compares the thresholds you had specified against your results and
updates the Overall Status column with PASS or FAIL.

18-19

18 Software Quality with Polyspace Metrics

9 To define another set of custom quality objectives, add the following content to the
Custom-BF-QO-Definitions.xml file:

<SQO ID="Custom-BF-QO-Level_2" ParentID="Custom-BF-QO-Level"

 ApplicableProduct="Bug Finder" ApplicableProject="My_Project">

 ...

</SQO>

• ID represents the name of the new set.

You cannot have the same values of ID and ApplicableProject for two
different sets of quality objectives. For example, if you use ID="Custom-BF-
QO-Level" for two different custom sets, and ApplicableProject is either
My_Project or "" for both sets, you see the following error:

The SQO level 'Custom-BF-QO-Level' is multiply defined.

• ParentID specifies another level from which the current level inherits its quality
objectives. In the preceding example, the level Custom-BF-QO-Level_2 inherits
its quality objectives from the level Custom-BF-QO-Level.

If you do not want to inherit quality objectives from another level, omit this
attribute.

• ... represents the additional quality thresholds that you specify for the level
Custom-BF-QO-Level_2.

The quality thresholds that you specify override the thresholds that Custom-BF-
QO-Level_2 inherits from Custom-BF-QO-Level. For instance, if you specify
<goto>1</goto>, this objective overrides the threshold specification <goto>0</
goto> of Custom-BF-QO-Level.

Elements in Custom Quality Objective Files

• “HIS Metrics” on page 18-21
• “Non-HIS Metrics” on page 18-21

The following tables list the XML elements that can be added to the custom BF-QO file.
The content of each element specifies a threshold against which the software compares
analysis results. For each element, the table lists the metric to which the threshold
applies. Here, HIS refers to the Hersteller Initiative Software.

18-20

 Compare Metrics Against Software Quality Objectives

HIS Metrics

Element Metric

comf Comment Density
path Number of Paths
goto Number of Goto Statements
vg Cyclomatic Complexity
calling Number of Calling Functions
calls Number of Called Functions
param Number of Function Parameters
stmt Number of Instructions
level Number of Call Levels
return Number of Return Statements
vocf Language Scope
ap_cg_cycle Number of Recursions
ap_cg_direct_cycle Number of Direct Recursions
Num_Unjustified_Violations Number of unjustified violations of coding

rules specified by entries under the element
CodingRulesSet

Num_Unjustified_BF_Checks Number of unjustified defects

Non-HIS Metrics

Element Description of metric

fco Estimated Function Coupling
flin Number of Lines Within Body
fxln Number of Executable Lines
ncalls Number of Call Occurrences

18-21

18 Software Quality with Polyspace Metrics

Web Browser Requirements for Polyspace Metrics

Polyspace Metrics supports the following web browsers:

• Internet Explorer® version 7.0, or later
• Firefox® version 3.6, or later
• Google® Chrome version 12.0, or later
• Safari for Mac version 6.1.4 and 7.0.4

To use Polyspace Metrics, install Java, version 1.4 or later on your computer.

For the Firefox web browser, manually install the required Java plug-in. For example, if
your computer uses the Linux operating system:

1 Create a Firefox folder for plug-ins:
mkdir ~/.mozilla/plugins

2 Go to this folder:
cd ~/.mozilla/plugins

3 Create a symbolic link to the Java plug-in, which is available in the Java Runtime
Environment folder of your MATLAB installation:
ln -s MATLAB_Install/sys/java/jre/glnxa64/jre/lib/amd64/libnpjp2.so

18-22

 View Results List in Polyspace Metrics

View Results List in Polyspace Metrics

This example shows how to use Polyspace Metrics to view the Results List in and
download results. Your results appear in Polyspace Metrics if,

• Before analyzing your code in batch mode, you selected the Add to results
repository analysis option.

• After analyzing your code, batch or local mode, you selected Metrics > Upload to
Metrics.

Open Polyspace Metrics

1 From the Polyspace interface, select Metrics > Open Metrics.

You can also open the Polyspace Metrics Web UI using the URL:

protocol://ServerName:PortNumber

• protocol is either http (default) or https.

To use HTTPS, you must configure the web server for HTTPS.
• ServerName is the name or IP address of your Polyspace Metrics server.
• PortNumber is the web server port number (default 8080).

On the Metrics homepage, you can see all projects uploaded to your Polyspace
Metrics repository.

18-23

18 Software Quality with Polyspace Metrics

View Results List

1 Select the Projects tab.
2 Hover over the project name to see a summary of the project results.
3 To see more details, select the project name.

The project opens to a Results List for the project.

18-24

 View Results List in Polyspace Metrics

Polyspace Metrics shows the summary graphically

Confirmed Defects column lists the number of coding rule violations or checks that
you have reviewed.

4 To view the results in more detail, select the tabs:

• Code Metrics: Statistics about your project such as number of lines, header
files, and function calls. To see code metrics, you must enable the analysis option
Calculate code metrics (-code-metrics).

• Coding Rules: Description of coding rule violations.
• Bug-Finder: Description of defects detected by Polyspace Bug Finder.

Download Results

1 Select the Projects tab.
2 To view the Results List for your project, on the Projects column, select the project

name.

18-25

18 Software Quality with Polyspace Metrics

The Results List for the project appears on the web page under the Summary tab.

3 To download results:

• Individual file — click a file name in the Verification column.
• Whole project — click a version number in the Verification column.
• Group of files —

a Right-click the row containing a file in the group. From the context menu,
select Add To Module.

b Enter the name of your module in the dialog box. Click OK.

18-26

 View Results List in Polyspace Metrics

The name of the module appears on the Verification column.
c Drag and drop the other files in the group to the module.
d Click the name of the module.

Note: If you download results using Internet Explorer 11, it may take a minute or
two to open the Java plug-in and load the Polyspace interface.

The results open on the Results List pane in Polyspace Bug Finder. The filter Show
> Web checks on this pane indicate that you have downloaded the results from
Polyspace Metrics.

Related Examples
• “Set Up Polyspace Metrics”
• “Review and Fix Results” on page 5-30

18-27

